Topology

Math 631-001

Spring 2023


The following table contains the schedule for the course. This page will be updated regularly throughout the semester.

WeekDatesSections in the Book
101/23 - 01/27I. Topological Spaces
    1. What is Topology?
    2. Topological Spaces12
201/30 - 02/03    3. Basis for a Topology13
    4. Topology via Order and Products14, 15
302/06 - 02/10    5. The Subspace Topology16
    6. Closed Sets and Limit Points17
    7. Limits of Sequences and Separation Axioms17
402/13 - 02/17    8. The Metric Topology20
II. Continuity of Functions
    1. Continuous Functions18
502/20 - 02/24    2. Topology of Infinite Products19
    3. Continuity in Metric Spaces20, 21
602/27 - 03/03    4. The Quotient Topology22
III. Connectedness and Compactness
    1. Connected Spaces23
703/06 - 03/10    2. Connected Subspaces of the Real Line24
03/09Midterm Exam (5:55pm-7:10pm)
803/13 - 03/17No class! (Spring Break)
903/20 - 03/24    3. Components and Local Connectedness25
    4. Compact Spaces26, 27
1003/27 - 03/31    5. Products of Compact Spaces26, 37
1104/03 - 04/07    6. Compactness in the Reals and Metric Spaces27, 28
    7. Local Compactness29
1204/10 - 04/14IV. Countability and Separation Axioms
    1. The Countability Axioms30
    2. More Separation Axioms31, 32
    3. The Urysohn Lemma33
    4. The Urysohn Metrization Theorem34
    5. The Tietze Extension Theorem35
1304/17 - 04/21V. Fundamental Group and Covering Spaces
    1. Homotopy of Paths51
    2. Some Terminology from Group Theory52
1404/24 - 04/28    3. The Fundamental Group52, 59, 60
    4. Covering Spaces and Liftings53, 54
1505/01 - 05/05    5. A Sampling of Fundamental Groups54, 59, 60
    6. Higher Homotopy Groups and Then?
1605/11Final Exam (4:30pm-7:15pm)

For the course, I will draw material from the following books: