Modern Applied Mathematics I

Math 413-001 (Fall 2025)

Detailed Syllabus

The following table contains a tentative schedule for the course. This page will be updated regularly throughout the semester.

WeekDate(s)Notes PagesBook Sections
I. Dimensional Analysis and Scaling
108/25 - 08/29    1. Basic Simplification1-6[H] 1.1, [LS] 6.1, [L] 1.1.1
    2. Conditioning and Sensitivity7-11[LS] 6.1
209/01    No class! (Labor Day)
09/02 - 09/05    3. Dimensional Methods12-17[H] 1.2, [LS] 6.2, [L] 1.1.2
    4. The Buckingham Pi Theorem18-24[H] 1.3, [L] 1.1.3, 1.1.4
309/08 - 09/12    5. Scaling25-32[LS] 6.3, [L] 1.2.1, 1.2.3
II. Perturbation Methods
    1. Formal Approximations for Root Finding33-37[H] 2.2.1, 2.2.2, [M] 1.2, 1.3
    2. Expansions via Computer Algebra38-40[H] 2.2.2
409/15 - 09/19    3. The Implicit Function Theorem41-43
    4. Justification and Error Estimates44-48[M] 1.4
    5. The Newton Polygon49-56[M] 1.5
509/22 - 09/26    6. Rescaled Coordinates57-61[H] 2.3, 2.4, [M] 1.6
    7. Bifurcations62-68[L] 1.3.2
III. Perturbations of Differential Equations
609/29 - 10/03    1. Perturbations of Second-Order Linear Equations69-71[M] 2.1
    2. Regular Perturbations of Initial Value Problems72-76[H] 2.2.3, [L] 3.1.1, [M] 2.4
    Review for the Midterm Exam
710/06 - 10/10    3. Regular Perturbations of Boundary Value Problems77-79[M] 2.5
10/08    Midterm Exam, 4:30pm-5:45pm
810/13    No class! (Fall Break)
10/14 - 10/17    4. Oscillatory Problems and Secular Terms80-83[L] 3.1.2, [M] 4.1
910/20 - 10/24    5. Poincare-Lindstedt Expansions84-90[L] 3.1.3, [M] 4.2
    6. Boundary Layer Analysis91-94[H] 2.5, [L] 3.2.3, 3.3.1
1010/27 - 10/31    7. Matched Asymptotic Expansions95-103[H] 2.6, [L] 3.3.2, 3.3.3, 3.3.4
IV. Stability and Bifurcations
    1. Qualitative Study of Dynamical Systems104-112[L] 1.3.1, 2.1
1111/03 - 11/07    2. Dynamics of Scalar Flows113-116[L] 1.3.1, 1.3.2
    3. Effects of Parameter Variation117-123[L] 1.3.2, 2.4
1211/10 - 11/14    4. Equilibrium Stability in Higher Dimensions124-130[H] 3.2.3, 3.5, [L] 2.2, 2.3
    5. Case Study: The Tacoma Narrows Bridge131-139
V. Modeling with Differential Equations
1311/17 - 11/21    1. The Law of Mass Action140-144[H] 3.2.1, [L] 2.5.1
    2. Conservation Laws for the Kinetic Equations145-148[H] 3.2.2, [L] 2.5.1
1411/24 - 11/25    3. Michaelis-Menten Enzyme Kinetics149-156[H] 3.3.1, 3.6, [L] 2.5.2
11/26    No class! (Thanksgiving Break)
1512/01 - 12/05    4. The SIR Model for Epidemics157-161[H] 3.1.3, [L] 2.6.3
1612/08    5. Epidemics with Reinfection and Vaccination162-167[H] 3.3.2, 3.5.3, [L] 2.6.1
12/10    Final Exam, 4:30pm-7:15pm

For the course, I will draw material from the following books: