References

[Ale37]
P. Alexandrov. Diskrete Räume. Mathematiceskii Sbornik (N.S.) 2, 501–518 (1937).
[BKMW20]
B. Batko, T. Kaczynski, M. Mrozek and T. Wanner. Linking combinatorial and classical dynamics: Conley index and Morse decompositions. Foundations of Computational Mathematics 20, 967–1012 (2020).
[Con78]
C. Conley. Isolated Invariant Sets and the Morse Index (American Mathematical Society, Providence, R.I., 1978).
[DKMW11]
P. Dłotko, T. Kaczynski, M. Mrozek and T. Wanner. Coreduction homology algorithm for regular CW-complexes. Discrete & Computational Geometry 46, 361–388 (2011).
[DLMS24]
T. K. Dey, M. Lipiński, M. Mrozek and R. Slechta. Computing connection matrices via persistence-like reductions. SIAM Journal on Applied Dynamical Systems 23, 81–97 (2024).
[DW18]
P. Dłotko and T. Wanner. Rigorous cubical approximation and persistent homology of continuous functions. Computers & Mathematics with Applications 75, 1648–1666 (2018).
[EH10]
H. Edelsbrunner and J. L. Harer. Computational Topology (American Mathematical Society, Providence, 2010).
[For98a]
R. Forman. Combinatorial vector fields and dynamical systems. Mathematische Zeitschrift 228, 629–681 (1998).
[For98b]
R. Forman. Morse theory for cell complexes. Advances in Mathematics 134, 90–145 (1998).
[Fra89]
R. Franzosa. The connection matrix theory for Morse decompositions. Transactions of the American Mathematical Society 311, 561–592 (1989).
[GMW05]
M. Gameiro, K. Mischaikow and T. Wanner. Evolution of pattern complexity in the Cahn-Hilliard theory of phase separation. Acta Materialia 53, 693–704 (2005).
[HMS21]
S. Harker, K. Mischaikow and K. Spendlove. A computational framework for connection matrix theory. Journal of Applied and Computational Topology 5, 459–529 (2021).
[KMM04]
T. Kaczynski, K. Mischaikow and M. Mrozek. Computational Homology. Vol. 157 of Applied Mathematical Sciences (Springer-Verlag, New York, 2004).
[KMW16]
T. Kaczynski, M. Mrozek and T. Wanner. Towards a formal tie between combinatorial and classical vector field dynamics. Journal of Computational Dynamics 3, 17–50 (2016).
[Lef42]
S. Lefschetz. Algebraic Topology. Vol. 27 of American Mathematical Society Colloquium Publications (American Mathematical Society, New York, 1942).
[LKMW23]
M. Lipinski, J. Kubica, M. Mrozek and T. Wanner. Conley-Morse-Forman theory for generalized combinatorial multivector fields on finite topological spaces. Journal of Applied and Computational Topology 7, 139–184 (2023).
[Mas91]
W. S. Massey. A Basic Course in Algebraic Topology. Vol. 127 of Graduate Texts in Mathematics (Springer-Verlag, New York, 1991).
[MB09]
M. Mrozek and B. Batko. Coreduction homology algorithm. Discrete & Computational Geometry 41, 96–118 (2009).
[MSTW22]
M. Mrozek, R. Srzednicki, J. Thorpe and T. Wanner. Combinatorial vs. classical dynamics: Recurrence. Communications in Nonlinear Science and Numerical Simulation 108, Paper No. 106226, 30 pages (2022).
[MW21]
M. Mrozek and T. Wanner. Creating semiflows on simplicial complexes from combinatorial vector fields. Journal of Differential Equations 304, 375–434 (2021).
[MW23]
M. Mrozek and T. Wanner. Connection matrices in combinatorial topological dynamics, arXiv:2103.04269 (2023).
[Mun84]
J. R. Munkres. Elements of Algebraic Topology (Addison-Wesley, Menlo Park, 1984).
[SW24]
E. Sander and T. Wanner. Theory and Numerics of Partial Differential Equations (SIAM, Philadelphia, 2024). In preparation, 1007 pages.
[SW14a]
T. Stephens and T. Wanner. Isolating block validation in Matlab, https://github.com/almost6heads/isoblockval (2014).
[SW14b]
T. Stephens and T. Wanner. Rigorous validation of isolating blocks for flows and their Conley indices. SIAM Journal on Applied Dynamical Systems 13, 1847–1878 (2014).
[GUD24]
GUDHI Project. GUDHI User and Reference Manual. 3.10.1 Edition (GUDHI Editorial Board, 2024).