
ConleyDynamics.jl

Built by Julia 1.10.5

Thomas Wanner

October 16, 2024

Contents

Contents i

I Overview 1

1 ConleyDynamics.jl 2

1.1 Introduction . 2

1.2 Features . 2

1.3 Installation . 2

1.4 Manual Outline . 3

II Manual 5

2 Tutorial 6

2.1 Creating Simplicial Complexes . 6

2.2 Computing Homology and Persistence . 8

2.3 Forman Vector Fields . 10

2.4 Isolated Invariant Sets . 12

2.5 Connection Matrices . 13

2.6 Multivector Fields . 15

2.7 Analyzing Planar Vector Fields . 18

2.8 References . 20

3 Lefschetz Complexes 22

3.1 Basic Lefschetz Terminology . 22

3.2 Lefschetz Complex Data Structure . 24

3.3 Simplicial Complexes . 27

3.4 Cubical Complexes . 29

3.5 Lefschetz Complex Operations . 33

3.6 References . 35

4 Homology 36

4.1 Lefschetz Complex Homology . 36

4.2 Relative Homology . 40

4.3 Persistent Homology . 43

4.4 References . 47

5 Conley Theory 49

5.1 Multivector Fields . 49

5.2 Invariance and Conley Index . 51

i

CONTENTS ii

5.3 Morse Decompositions . 54

5.4 Connection Matrices . 57

5.5 Extracting Subsystems . 62

5.6 Analysis of a Planar System . 67

5.7 Analysis of a Spatial System . 72

5.8 References . 74

6 Examples 77

6.1 A One-Dimensional Forman Field . 77

6.2 A Planar Forman Vector Field . 79

6.3 The Multivector Field from the Logo . 81

6.4 Critical Flow on a Simplex . 82

6.5 Flow on a Cylinder and a Moebius Strip . 83

6.6 Nonunique Connection Matrices . 86

6.7 Forcing Three Connection Matrices . 89

6.8 A Lefschetz Multiflow Example . 92

6.9 Small Complex with Periodicity . 95

6.10 Subdividing a Multivector . 96

6.11 A Combinatorial Lorenz System . 99

6.12 References . 101

7 Sparse Matrices 102

7.1 Sparse Matrix Format . 102

7.2 Creating Sparse Matrices . 103

7.3 Sparse Matrix Access . 104

7.4 Elementary Matrix Operations . 105

7.5 Sparse Matrix Information . 105

8 References 106

III Core API 108

9 Composite Data Structures 109

9.1 Lefschetz Complex Type . 109

9.2 Cell Subset Types . 110

9.3 Conley-Morse Graph Type . 110

10 Lefschetz Complex Functions 111

10.1 Simplicial Complexes . 111

10.2 Cubical Complexes . 113

10.3 Lefschetz Complex Queries . 116

10.4 Topological Features . 117

10.5 Lefschetz Subcomplexes . 119

10.6 Lefschetz Helper Functions . 120

10.7 Cell Subset Helper Functions . 122

10.8 Coordinate Helper Functions . 123

11 Homology Functions 125

11.1 Regular Homology . 125

11.2 Persistent Homology . 126

11.3 Reduction Algorithm . 126

CONTENTS iii

12 Conley Theory Functions 127

12.1 Multivector Fields . 127

12.2 Conley Index Computations . 131

12.3 Connection Matrix Computation . 133

13 Example Functions 135

13.1 Examples from Batko et al. 135

13.2 Examples from Mrozek & Wanner . 136

13.3 General Examples . 139

14 Plotting Functions 143

14.1 Visualizing Simplicial Complexes . 143

14.2 Visualizing Cubical Complexes . 144

15 Sparse Matrix Functions 147

15.1 Internal Sparse Matrix Representation . 147

15.2 Access Functions . 147

15.3 Basic Functions . 149

15.4 Elementary Matrix Operations . 150

15.5 Conversion Functions . 151

16 Complete API Index 153

16.1 Composite Data Structures . 153

16.2 Lefschetz Complex Functions . 153

16.3 Homology Functions . 154

16.4 Conley Theory Functions . 154

16.5 Example Functions . 155

16.6 Plotting Functions . 155

16.7 Sparse Matrix Functions . 155

Part I

Overview

1

Chapter 1

ConleyDynamics.jl

Conley index and multivector fields for Julia.

1.1 Introduction

ConleyDynamics.jl is a Julia package for studying combinatorial multivector fields using Conley theory. The

multivector fields can be studied on arbitrary Lefschetz complexes, which include both simplicial and cubical

complexes as important special cases. The concept of combinatorial multivector field generalizes Forman

vector fields, which were originally introduced to study Morse theory in a discrete combinatorial setting.

Note

This documentation is also available in PDF format: ConleyDynamics.pdf.

1.2 Features

• Data structures for Lefschetz complexes, in particular simplicial and cubical complexes.

• Classical Forman combinatorial vector fields and multivector fields are supported.

• Computation of Conley indices, connection matrices, and Conley-Morse graphs.

• Basic homology algorithms over finite fields and the rationals, including persistent homology and relative

homology.

• Algorithms rely on a built-in sparse matrix implementation which is geared towards computations over

finite fields and the rationals.

1.3 Installation

To use ConleyDynamics.jl please install Julia 1.10 or higher. See https://julialang.org/downloads/ for instructions

on how to obtain Julia for your system.

At the Julia prompt simply type

julia> using Pkg; Pkg.add("https://github.com/almost6heads/ConleyDynamics.jl")

2

https://almost6heads.github.io/ConleyDynamics.jl
https://almost6heads.github.io/ConleyDynamics.jl
https://julialang.org/downloads/

CHAPTER 1. CONLEYDYNAMICS.JL 3

After Julia has finished downloading and precompiling the package and all of its dependencies, you can start

using it by typing

julia> using ConleyDynamics

1.4 Manual Outline

The Tutorial briefly explains how to get started with ConleyDynamics.jl. More details, including on the under-

lying mathematics, are provided in the following three sections, which cover Lefschetz complexes, homology,

and Conley theory including connection matrices. After a discussion of all included examples in the Examples

section, the manual concludes with a description of the sparse matrix format underlying the package.

• Tutorial

– Creating Simplicial Complexes

– Computing Homology and Persistence

– Forman Vector Fields

– Isolated Invariant Sets

– Connection Matrices

– Multivector Fields

– Analyzing Planar Vector Fields

– References

• Lefschetz Complexes

– Basic Lefschetz Terminology

– Lefschetz Complex Data Structure

– Simplicial Complexes

– Cubical Complexes

– Lefschetz Complex Operations

– References

• Homology

– Lefschetz Complex Homology

– Relative Homology

– Persistent Homology

– References

• Conley Theory

– Multivector Fields

– Invariance and Conley Index

– Morse Decompositions

– Connection Matrices

– Extracting Subsystems

– Analysis of a Planar System

https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 1. CONLEYDYNAMICS.JL 4

– Analysis of a Spatial System

– References

• Examples

– A One-Dimensional Forman Field

– A Planar Forman Vector Field

– The Multivector Field from the Logo

– Critical Flow on a Simplex

– Flow on a Cylinder and a Moebius Strip

– Nonunique Connection Matrices

– Forcing Three Connection Matrices

– A Lefschetz Multiflow Example

– Small Complex with Periodicity

– Subdividing a Multivector

– A Combinatorial Lorenz System

– References

• Sparse Matrices

– Sparse Matrix Format

– Creating Sparse Matrices

– Sparse Matrix Access

– Elementary Matrix Operations

– Sparse Matrix Information

Part II

Manual

5

Chapter 2

Tutorial

This tutorial explains the basic usage of the main components of ConleyDynamics.jl. It is not meant to be

exhaustive, and more details will be provided in the more indiviualized sections. Also, precise mathematical

definitions will be delayed until then. The presented examples are taken from the papers [BKMW20] and

[MW23], with minor modifications.

2.1 Creating Simplicial Complexes

The fundamental mathematical object for ConleyDynamics.jl is a Lefschetz complex [Lef42]. For now we note

that both simplicial complexes and cubical complexes are special cases, and ConleyDynamics.jl provides con-

venient interfaces for generating them.

For the sake of simplicity, this tutorial only considers the case of a simplicial complex. Recall that an abstract

simplicial complex K is just a collection of finite sets, called simplices, which is closed under taking subsets.

In other words, every subset of a simplex is again a simplex. Each simplex σ has an associated dimension
dimσ, which is one less than the number of its elements. One usually calls simplices of dimension 0 vertices,
edges have dimension 1, and simplices of dimension 2 are triangles. It follows easily from these definitions

that every simplex is the union of its vertices. The following notions associated with simplicial complexes are

important for this introduction:

• A face of a simplex is any of its subsets. Notice that every simplex is a face of itself, and it is the only

face that has the same dimension as the simplex. Faces whose dimension is strictly smaller are referred

to as proper faces.

• The boundary of a simplex σ is the collection of all proper faces of σ. For a triangle, this amounts to all
three edges and all three vertices which are part of it.

• A facet of a simplex σ is any face τ with dimension dim τ = dimσ − 1. Notice that the facets of a
simplex are the faces in its boundary of maximal dimension.

• The closure of a subset K0 of a simplicial complex K consists of the collection of all faces of simplices

inK0, and we denote the closure by clK0.

• A subset K0 of a simplicial complex K is called closed, if it equals its closure. In other words, K0 is

closed if and only if for every simplex σ inK0 all of its boundary simplices are part ofK0 as well. Thus,

a closed subset of a simplicial complex is a simplicial complex in its own right.

In ConleyDynamics.jl it is easy to generate a simplicial complex. This requires two objects:

6

https://almost6heads.github.io/ConleyDynamics.jl
https://almost6heads.github.io/ConleyDynamics.jl
https://almost6heads.github.io/ConleyDynamics.jl
https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 2. TUTORIAL 7

Figure 2.1: A first simplicial complex

• The vertices are described by a vector labels of string labels for the vertices of the simplicial complex.

Thus, the length of the vector equals the number of vertices, and the k-th entry is the label for the k-th

vertex.

• In addition, a second vector simplices has to describe enough simplices so that the simplicial complex

is determined. This object is a vector of vectors, and the vector simplices[k] describes the index

values of all the vertices in the k-th simplex. These indices are precisely the corresponding locations of

the vertices in labels.

Simplices via labels

It is also possible to specify the list of simplices using a Vector{Vector{String}}, i.e., as a vector of

string vectors. In this case, the entry simplices[k] is a list of the labels of the vertices.

Watch the label length

It is expected that the labels in labels all have the same number of characters. This is due to the fact

that when creating the simplicial complex, ConleyDynamics.jl automatically creates labels for each

of the simplices in K, by concatenating the vertex labels. Not using a fixed label size could lead to
ambiguities, and will therefore raise an error message.

The following first example creates a simple simplicial complex. The complex is shown in the above figure,

and it has six vertices which we label by the first six letters.

labels = ["A","B","C","D","E","F"]

simplices = [["A","B"],["A","C"],["B","C"],["B","D"],["D","E","F"]]

sc = create_simplicial_complex(labels,simplices)

fieldnames(typeof(sc))

(:labels, :dimensions, :boundary, :ncells, :dim, :indices)

Based on the simplex specifications, the generated simplicial complex K consists of three edges connecting

each of the vertices A, B, and C, a two-dimensional triangle DEF, as well as the edge BD which connects the

https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 2. TUTORIAL 8

triangle boundary and the filled triangle. The created struct sc is of type LefschetzComplex, with fieldnames

as indicated in the above output. The number of cells in the complex can be seen as follows:

println(sc.ncells)

14

Note that the final simplicial complex has a total of seven edges, since also the edges of DEF are part of the

simplicial complex. They are automatically generated by create_simplicial_complex. The dimension of K
is the largest simplex dimensions, and can be recalled via

println(sc.dim)

2

The sc struct contains a vector of labels, which in this case takes the form

println(sc.labels)

["A", "B", "C", "D", "E", "F", "AB", "AC", "BC", "BD", "DE", "DF", "EF", "DEF"]

Finally, the Lefschetz complex data structure for our simplicial complex K includes the dimensions for the

corresponding cells in the integer vector sc.dimensions, a dictionary sc.indices which associates each sim-

plex label with its integer index, and the boundary map sc.boundary which will be described in more detail in

Lefschetz Complexes. The latter map is internally stored as a sparse matrix over either a finite field or over

the rationals. See also the discussion of Sparse Matrices.

2.2 Computing Homology and Persistence

Any simplicial complex, and in fact any Lefschetz complex, has an associated homology. Informally, homology

describes the connectivity structure of the simplicial complex. More precisely, the homology consists of a

sequence of integers, called the Betti numbers, which are indexed by dimension. There are Betti numbers

βk(K) for every k = 0, . . . , dimK. The zero-dimensional Betti number β0(K) gives the number of connected
components ofK, while β1(K) counts the number of independent loops that can be found inK. Finally, β2(K)
equals the number of cavities. In our case, we have

homology(sc)

3-element Vector{Int64}:

1

1

0

CHAPTER 2. TUTORIAL 9

This means that the simplicial complex K has one component, as well as one loop, and no cavities. The

function homology returns a vector of integers, whose k-th entry is βk−1(K). We would like to point out that in
ConleyDynamics.jl all homology computations are performed over fields, and therefore homology is completely

described by the Betti numbers. Two types of fields are supported, and they are selected by the characteristic

p in the sparse boundary matrix:

• If p=0, then the homology computation uses the field of rational numbers.

• For any prime number p, homology is determined over the finite field GF (p) with p elements.

ConleyDynamics.jl also allows for the computation of relative homology. In the case of relative homology,

together with the simplicial complex K one has to specify a closed subcomplex K0. Intuitively, the relative

homology H∗(K,K0) is the homology of a new space, which is obtained from K by identifying K0 to a

single point, and then decreasing the zero-dimensional Betti number by 1. Consider for example the following

command:

relative_homology(sc, [1,6])

3-element Vector{Int64}:

0

2

0

In this case, the subcomplex K0 consists of the two vertices A and F, which are therefore glued together.

This leads to zero Betti numbers in dimension 0 and 2 (remember that the zero-dimensional Betti number is

decreased by 1!), and a one-dimensional Betti number of 2. The latter is increased by one since we obtain a

second loop by moving from A to F = A along the edges AB, BD, and DF. Another example is the following:

relative_homology(sc, ["DE","DF","EF"])

3-element Vector{Int64}:

0

1

1

Now the subcomplex K0 consists of the edges DE, DF, and EF – together with the three vertices D, E, and

F which are automatically added by relative_homology. Identifying them all to one point creates a hollow

two-dimensional sphere, and the relative Betti numbers reflect that fact.

As the above two examples demonstrate, the subcomplex can be specified either as a list of simplex indices,

or through the simplex labels. Moreover, the specfied subspace simplex list is automatically extended by

relative_homology to include all simplex faces, i.e., it computes the simplicial closure to arrive at a closed

subcomplex. Finally, note that the subcomplex can be empty:

relative_homology(sc, [])

https://almost6heads.github.io/ConleyDynamics.jl
https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 2. TUTORIAL 10

3-element Vector{Int64}:

1

1

0

As expected, in this case one obtains the standard homology of sc.

In addition to regular and relative homology, ConleyDynamics.jl can also compute persistent homology. For

this, one has to specify a filtration of closed Lefschetz complexes

K1 ⊂ K2 ⊂ . . . ⊂ Km.

Persistent homology tracks the appearance and disappearance (also often called the birth and death) of topo-

logical features as one moves through the complexes in the filtration. In ConleyDynamics.jl, one can specify a

Lefschetz complex filtration by assigning the integer k to each simplex that first appears in Kk. Moreover, it

is expected thatKm = K. Then the persistent homology is computed via the following command:

filtration = [1,1,1,2,2,2,1,1,1,3,2,2,2,4]

phsingles, phpairs = persistent_homology(sc, filtration)

([[1], [1], Int64[]], [[(2, 3)], [(2, 4)], Tuple{Int64, Int64}[]])

The function returns the persistence intervals, which give the birth and death indices of each topological feature

in each dimension. There are two types of intervals:

• Intervals of the form [a,∞) correspond to topological features that first appear in Ka and are still

present in the final complex. The starting indices of such features in dimension k are contained in the

list phsingles[k+1].

• Intervals of the form [a, b) correspond to topological features that first appear inKa and first disappear

inKb. The corresponding pairs (a,b) in dimension k are contained in the list phpairs[k+1].

In our above example, one observes intervals [1,∞) in dimensions zero and one – and these correspond to a
connected component and the loop generated by the edges AB, AC, and BC. These appear first in K1 and are

still present in K4. The interval [2, 3) in dimension zero represents the new component created by K2, and

it disappears through merging with the older component from K1 when the edge BD is introduced with K3.

Similarly, the interval [2, 4) in dimension one is the loop created by the triangle DE, DF, and EF in K2, which

disappears with the introduction of the triangle DEF inK4. Note that the interval death times respect the elder

rule: When for example a component disappears through merging, the younger interval gets killed, and the

older one continues to live. Similarly in higher dimensions.

2.3 Forman Vector Fields

The main focus of ConleyDynamics.jl is on the study of combinatorial topological dynamics on Lefschetz com-

plexes. While the phase space as Lefschetz complex has been discussed above, albeit only for the special

https://almost6heads.github.io/ConleyDynamics.jl
https://almost6heads.github.io/ConleyDynamics.jl
https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 2. TUTORIAL 11

Figure 2.2: A first Forman vector field

case of a simplicial complex, the dynamics part can be given in the simplest form by a combinatorial vector

field, also called a Forman vector field [For98a, For98b]. We will soon see that such vector fields are a more

restrictive version of multivector fields, but they are easier to start with. The following command defines a

simple Forman vector field on our sample simplicial complexK from above:

formanvf = [["A","AC"],["B","AB"],["C","BC"],["D","BD"],["E","DE"]]

5-element Vector{Vector{String}}:

["A", "AC"]

["B", "AB"]

["C", "BC"]

["D", "BD"]

["E", "DE"]

The Forman vector field formanvf is viualized in the accompanying figure.

According to the figure, a Forman vector field is comprised of arrows, as well as critical cells which are indicated

by red dots. Every simplex of the underlying simplicial complex is either critical, or it is contained in a unique

arrow. In other words, the collection of critical cells and arrows forms a partition of the simplicial complex K.
Arrows always have to consist of precisely two simplices: The source of the arrow is a simplex σ−, while its

target is a second simplex σ+. These two simplices have to be related in the sense that σ− is a facet of σ+.

As the above Julia code shows, a forman vector field is described by a vector of string vectors, where each

of the latter contains the labels of the two simplices making up an arrow. Note that the critical cells are

not explicitly listed, as any simplex of K that is not part of a vector is automatically assumed to be critical.

Alternatively, one could define the Forman vector field as a Vector{Vector{Int}}, if the labels are replaced

by the corresponding indices in sc.indices.

Intuitively, the visualization of our sample Forman vector field formanvf induces the following dynamical be-

havior on the simplicial complex sc:

• Critical cells can be though of as equilibrium states for the dynamics, i.e., they contain a stationary

solution. However, depending on their dimension they can also exhibit nonconstant dynamics – which

in backward time converges to the equilibrium, and in forward time flows towards the boundary of the

simplex.

CHAPTER 2. TUTORIAL 12

• Arrow sources always lead to flow into the interior of their target simplex σ+.

• Arrow targets create flow towards the boundary of σ+, except towards the source facet σ−.

In the above figure, for example, the simplex EF is a critical cell, so it contains an equilibrium. At the same

time, it also allows for flow towards the boundary, which consists of the vertices E and F. A solution flowing to

the former then has to enter DE, flow through D to BD, before entering the periodic orbit given by

B → AB → A → AC → C → BC → B → AB → . . .

This heuristic description can be made precise. It was shown in [MW21] that for every Forman vector field on

a simplicial complex there exists a classical dynamical system which exhibits dynamics consistent with the

above interpretation.

2.4 Isolated Invariant Sets

The global dynamical behavior of a Forman vector field on a simplicial complex can be described by first

decomposing it into smaller building blocks. An invariant set is a subset S ⊂ K of the simplicial complex such

that for every simplex σ ∈ S there exists a solution through σ which is contained in S and which exists for all
forward and backward time. In our example the following are sample invariant sets:

• Every critical cell σ by itself is an invariant set, since we can choose the constant solution σ in the above
definition. Thus, also every union of critical cells is invariant.

• The periodic orbit SP = {A,B,C,AB,AC,BC} is an invariant set, since the periodic orbit mentioned
earlier exists for all forward and backward time in SP and passes through every simplex of the orbit.

While it is tempting to try to decompose the dynamics into invariant sets and "everything else", Conley realized

that a better theory can be built around invariant sets which are isolated [Con78]. In our combinatorial setting,

an isolated invariant set is an invariant set S ⊂ K with the following two additional properties:

• The set S is locally closed, i.e., the associated set moS = clS \ S is closed in the simplicial complex.
Recall that the closure clA of a set A ⊂ K consists of all simplices which are subsets of simplices in A,
and a set is closed if it equals its closure. The set moS is called the mouth of S.

• The set S is compatible with the Forman vector field, i.e., the set is the union of critical cells and arrows.
In other words, if one of the arrow ends is contained in S, then so is the other.

One can easily see that the periodic orbit SP is an isolated invariant set, since it is compatible and closed –

and thereforemoSP = ∅ is closed. Similarly, the single critical simplex S1 = {DEF} is an isolated invariant
set, since in this case the set moS1 = {D,E, F,DE,DF,EF} is closed, and S1 is compatible. On the

other hand, the invariant set S2 = {DEF,F} is not an isolated invariant set, since the mouth moS2 =
{D,E,DE,DF,EF} is not closed – despite the fact that S2 is compatible. For an example of an invariant

set which has a closed mouth but is not compatible, see [KMW16, Figure 5].

It follows from the definition of isolation that for every isolated invariant set S ⊂ K the two sets clS andmoS
are closed, and that the latter is a (possibly empty) subset of the former. Thus, the relative homology of this

pair is defined and we let

CHAPTER 2. TUTORIAL 13

CH∗(S) = H∗(clS,moS)

denote the Conley index of the isolated invariant set. The Conley index can be computed using the command

conley_index. For the three critical cells F, DF, and DEF one obtains the following Conley indices:

println(conley_index(sc, ["F"]))

println(conley_index(sc, ["DF"]))

println(conley_index(sc, ["DEF"]))

[1, 0, 0]

[0, 1, 0]

[0, 0, 1]

In other words, the Conley index of a critical cell of dimension k has Betti number βk = 1, while the remaining
Betti numbers vanish. This is precisely the relative homology of a k-dimensional sphere with respect to a point
on the sphere. On the other hand, for the Conley index of the periodic orbit SP one obtains:

conley_index(sc, ["AB", "AC", "BC", "A", "B", "C"])

3-element Vector{Int64}:

1

1

0

This Conley index is nontrivial in dimensions 0 and 1. This is exactly the Conley index of an attracting periodic
orbit in classical dynamics.

2.5 Connection Matrices

One of the main features of ConleyDynamics.jl is its capability to take a given combinatorial vector or multi-

vector field on an arbitrary Lefschetz complex and determine its global dynamical behavior. This is done by

computing the connection matrix, which in our setting is discussed in detail in [MW23]. For the sample simpli-

cial complex sc and the Forman vector field formanvf the connection matrix information can be determined

as follows:

cm = connection_matrix(sc, formanvf)

fieldnames(typeof(cm))

(:matrix, :columns, :poset, :labels, :morse, :conley, :complex)

This command calculates the connection matrix over the finite field GF (2) = Z2. The base field for this

computation is determined by the data type of the boundary matrix in the underlying simplicial complex sc.

https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 2. TUTORIAL 14

By default, if one uses the function create_simplicial_complex without specifying the field characteristic p,

the simplicial complex is created over the finite field Z2, i.e., with p=2.

The connection_matrix function returns a struct which contains the following information regarding the global

dynamics of the combinatorial dynamical system:

• The field cm.morse contains the Morse decomposition of the Forman vector field. This is a collection

of isolated invariant sets which capture all recurrent behavior. Outside of these sets, the dynamics is

gradient-like, i.e., it moves from one Morse set to another.

• Since each of the Morse sets is an isolated invariant set, they all have an associated Conley index. These

are contained in the field cm.conley.

• In addition, the struct cm contains information on the actual connection matrix in the field cm.matrix.

While the field contains the matrix, the rows and columns of the connection matrix correspond to the

simplices in the underlying simplicial complex sc listed in cm.labels. These simplices represent the

basis for the homology groups of all the Morse sets. Moreover, a nonzero entry in the connection matrix

indicates that there has to be a connecting orbit between the Morse set containing the column label and

the Morse set containing the row label.

The remaining field names of the struct cm are described in the section on Conley Theory.

For our example system, the Morse sets are given by

cm.morse

5-element Vector{Vector{String}}:

["A", "B", "C", "AB", "AC", "BC"]

["F"]

["DF"]

["EF"]

["DEF"]

There are five of them: The stable periodic orbit SP mentioned earlier, the stable critical state F, the unstable

equilibria DF and EF, as well as the two-dimensional unstable critical cell DEF. The associated Conley indices

are

cm.conley

5-element Vector{Vector{Int64}}:

[1, 1, 0]

[1, 0, 0]

[0, 1, 0]

[0, 1, 0]

[0, 0, 1]

Clearly these indices are exactly as described in the homology section, since the underlying field is still Z2,

as determined by sc. For an example which involves computations over different fields, which also lead to

different Conley indices, we refer to the function example_moebius.

CHAPTER 2. TUTORIAL 15

Finally, the connection matrix itself is contained in cm.matrix. Since internally the connection matrix is stored

in a sparse format, we display it after conversion to a full matrix:

full_from_sparse(cm.matrix)

6×6 Matrix{Int64}:

0 0 0 1 1 0

0 0 0 0 0 0

0 0 0 1 1 0

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 0

In order to see which simplices represent the columns of the matrix, we use the command

println(cm.labels)

["A", "AC", "F", "DF", "EF", "DEF"]

The right-most column contains two nonzero entries, and they imply that there are connecting orbits between

the critical cell DEF and the two critical cells DF and EF, respectively. The second-to-last column establishes

connecting orbits originating from EF. One of these ends at the critical vertex F, while the other one leads to

A. Notice, however, that since A is part of the Morse set SP , i.e., the periodic orbit, this second nonzero entry

in the column implies the existence of a heteroclinic orbit between the equilibrium and the complete periodic

solution. Similarly, there are connections between DF and both F and the periodic orbit, in view of the fourth

column of the connection matrix.

A description of the remaining fields of cm can also be found in the API entry for connection_matrix. We

would like to emphasize again that internally, all computations necessary for finding the connection matrix are

performed automatically over the rationals or over the finite field GF (p). The choice depends on the data
type of the boundary matrix for the underlying Lefschetz complex, in this case the simplicial complex sc.

2.6 Multivector Fields

As second example of this tutorial we turn our attention to the logo of ConleyDynamics.jl. It shows a simple

multivector field on a simplicial complex, and both the simplicial complex sclogo and the multivector field

mvflogo can be defined using the commands

labels = ["A","B","C","D"]

simplices = [["A","B","C"],["B","C","D"]]

sclogo = create_simplicial_complex(labels,simplices)

mvflogo = [["A","AB"],["C","AC"],["B","BC","BD","BCD"]]

3-element Vector{Vector{String}}:

["A", "AB"]

["C", "AC"]

["B", "BC", "BD", "BCD"]

https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 2. TUTORIAL 16

Figure 2.3: The logo multivector field

This example is taken from [MW23, Figure 1], and is visualized in the accompanying figure.

The multivector field mvflogo clearly has a different structure from the earlier Forman vector field. While the

latter consists exclusively of arrows and critical cells, the former is made up of multivectors. In this context a

multivector is a collection of simplices which form a locally closed set, as defined earlier in the tutorial. One can

show that in the case of a simplicial complex, this is equivalent to requiring that if σ1 ⊂ σ2 are two simplices

in the multivector, then so are all simplices τ with σ1 ⊂ τ ⊂ σ2. In other words, multivectors are convex with

respect to simplex inclusion, i.e., with respect to the face relation. A multivector field is then a partition of the

simplicial complex into multivectors. See [LKMW23] for more details.

It is not difficult to see that every Forman vector field is a multivector field. Every critical cell consists of just

one simplex, so it trivially satisfies the above convexity condition. In addition, the two simplices contained in

an arrow do not allow for any simplex σ− ⊂ τ ⊂ σ+ apart from τ = σ±. As in the case of Forman vector

fields, multivector fields in ConleyDynamics.jl only need to list multivectors containing at least two simplices.

Any simplex not contained on the list automatically gives rise to a one-element multivector.

One important difference between Forman vector fields and multivector fields is the definition of criticality. In

the multivector field case, the types of multivectors are distinguished as follows:

• A multivector V is called critical, if the relative homologyH∗(clV,moV) is not trivial, i.e., at least one
Betti number is nonzero.

• A multivector V is called regular, if the relative homology H∗(clV,moV) is trivial, i.e., it vanishes in
all dimensions.

One can show that in the case of a Forman vector field, critical cells are always critical in the above sense,

while arrows are always regular. In our above example mvflogo, all three multivectors which are not singletons

are regular. For example, the following computation shows that the cell ABC is a critical cell:

cl1, mo1 = lefschetz_clomo_pair(sclogo, ["ABC"])

relative_homology(sclogo, cl1, mo1)

3-element Vector{Int64}:

0

0

1

https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 2. TUTORIAL 17

The first command creates the closure-mouth pair associated with the cell ABC, i.e., the variable cl1 is the

closed triangle, while mo1 is the closed boundary of the triangle. The next command determines the relative

homology. Notice that this employs another method under the name relative_homology, in contrast to the

one used earlier in this tutorial. For more details, see Homology Functions.

Alternatively, since every multivector is locally closed, one can also use the function conley_index for the

same computation:

conley_index(sclogo, ["ABC"])

3-element Vector{Int64}:

0

0

1

Similarly, the next sequence of commands verifies that the third nontrivial multivector mvflogo[3] is indeed

a regular multivector:

cl2, mo2 = lefschetz_clomo_pair(sclogo, mvflogo[3])

relative_homology(sclogo, cl2, mo2)

3-element Vector{Int64}:

0

0

0

The global dynamics can again be determined using the function connection_matrix:

cmlogo = connection_matrix(sclogo, mvflogo)

cmlogo.morse

3-element Vector{Vector{String}}:

["D"]

["A", "B", "C", "AB", "AC", "BC", "BD", "CD", "BCD"]

["ABC"]

As it turns out, our logo gives rise to three Morse sets, which in fact partition the simplicial complex. Their

Conley indices are given by

cmlogo.conley

3-element Vector{Vector{Int64}}:

[1, 0, 0]

[0, 1, 0]

[0, 0, 1]

CHAPTER 2. TUTORIAL 18

Finally, the connection matrix has the form

full_from_sparse(cmlogo.matrix)

3×3 Matrix{Int64}:

0 0 0

0 0 1

0 0 0

Notice that in this example, only the connection between the Morse set ABC and the large index 1 Morse set

comprising almost all of the simplicial complex can be detected algebraically. In fact, there are two connections

between the large Morse set and the stable equilibrium D, and they cancel algebraically.

2.7 Analyzing Planar Vector Fields

Our third and last example of the tutorial briefly indicates how ConleyDynamics.jl can be used to analyze the

global dynamics of certain planar ordinary differential equations. For this, consider the planar system given by

ẋ1 = x1

(
1− x2

1 − 3x2
2

)
ẋ2 = x2

(
1− 3x2

1 − x2
2

)
The right-hand side of this vector field can be implemented using the Julia function

function planarvf(x::Vector{Float64})

#

Sample planar vector field with nontrivial Morse decomposition

#

x1, x2 = x

y1 = x1 * (1.0 - x1*x1 - 3.0*x2*x2)

y2 = x2 * (1.0 - 3.0*x1*x1 - x2*x2)

return [y1, y2]

end

planarvf (generic function with 1 method)

To analyze the global dynamics of this vector field, we first create a Delaunay triangulation of the square

[−3/2, 3/2]2 using the commands

lc, coords = create_simplicial_delaunay(300, 300, 10, 30);

coordsN = convert_planar_coordinates(coords,[-1.5,-1.5], [1.5,1.5]);

cx = [c[1] for c in coordsN];

(minimum(cx), maximum(cx))

https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 2. TUTORIAL 19

(-1.5, 1.5)

The first command generates the triangulation in a square box with side length 300, while trying to keep a

minimum distance of about 10 between vertices. Once this has been accomplished, the second command

transforms the coordinates to the desired square domain. As the last two commands show, the resulting

x-coordinates do indeed lie between -3/2 and 3/2.

Next we can create a multivector field which describes the flow behavior through the edges of the triangula-

tion. Basically, for each edge which is traversed in only one direction, the corresponding multivector respects

this unidirectionality, while non-transverse edges lead to multivectors which allow for flow in both directions

between the adjacent triangles. This is achieved with the commands

mvf = create_planar_mvf(lc, coordsN, planarvf);

mvf[1:3]

3-element Vector{Vector{Int64}}:

[1, 610, 612, 2387]

[2, 616, 617, 2392]

[3, 622, 624, 2397]

The first command generates the multivector field, while the second one merely displays the first three result-

ing multivectors. Note that if the discretization is too coarse, this might lead to large multivectors that cannot

resolve the underlying dynamics. In our case, we can analyze the global dynamics of the created multivector

field using the commands

cm = connection_matrix(lc, mvf);

cm.conley

9-element Vector{Vector{Int64}}:

[1, 0, 0]

[1, 0, 0]

[0, 1, 0]

[1, 0, 0]

[0, 1, 0]

[1, 0, 0]

[0, 1, 0]

[0, 1, 0]

[0, 0, 1]

As the output shows, this planar system has nine isolated invariant sets:

• One unstable equilibrium of index 2,

• four unstable equilibria of index 1,

• and four stable equilibria.

CHAPTER 2. TUTORIAL 20

Figure 2.4: Morse sets of a planar vector field

More precisely, this computation does not in fact establish the existence of these equilibria, but of correspond-

ing isolated invariant sets which have the respective Conley indices. The connection matrix is given by

full_from_sparse(cm.matrix)

9×9 Matrix{Int64}:

0 0 1 0 0 0 1 0 0

0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0

It shows that there are twelve connecting orbits that are forced by the algebraic topology. Finally, we can

visualize the Morse sets using the command

fname = "tutorialplanar.pdf"

plot_planar_simplicial_morse(lc, coordsN, fname, cm.morse, pv=true)

2.8 References

See the full bibliography for a complete list of references cited throughout this documentation. This section

cites the following references:

CHAPTER 2. TUTORIAL 21

[BKMW20] B. Batko, T. Kaczynski, M. Mrozek and T. Wanner. Linking combinatorial and classical dynamics:

Conley index and Morse decompositions. Foundations of Computational Mathematics 20, 967–1012

(2020).

[Con78] C. Conley. Isolated Invariant Sets and the Morse Index (American Mathematical Society, Providence,

R.I., 1978).

[For98a] R. Forman. Combinatorial vector fields and dynamical systems. Mathematische Zeitschrift 228,

629–681 (1998).

[For98b] R. Forman. Morse theory for cell complexes. Advances in Mathematics 134, 90–145 (1998).

[KMW16] T. Kaczynski, M. Mrozek and T. Wanner. Towards a formal tie between combinatorial and classical

vector field dynamics. Journal of Computational Dynamics 3, 17–50 (2016).

[Lef42] S. Lefschetz. Algebraic Topology. Vol. 27 of American Mathematical Society Colloquium Publications

(American Mathematical Society, New York, 1942).

[LKMW23] M. Lipinski, J. Kubica, M. Mrozek and T. Wanner. Conley-Morse-Forman theory for generalized

combinatorial multivector fields on finite topological spaces.

Journal of Applied and Computational Topology 7, 139–184 (2023).

[MW21] M. Mrozek and T. Wanner. Creating semiflows on simplicial complexes from combinatorial vector

fields. Journal of Differential Equations 304, 375–434 (2021).

[MW23] M. Mrozek and T. Wanner. Connection matrices in combinatorial topological dynamics,

arXiv:2103.04269 (2023).

https://doi.org/10.1007/s10208-020-09444-1
https://doi.org/10.1007/PL00004638
https://doi.org/10.1007/PL00004638
https://doi.org/10.1006/aima.1997.1650
https://doi.org/10.3934/jcd.2016002
https://doi.org/10.1007/s41468-022-00102-9
https://doi.org/10.1016/j.jde.2021.10.001
https://doi.org/10.48550/arXiv.2103.04269

Chapter 3

Lefschetz Complexes

The fundamental structure underlying the functionality of ConleyDynamics.jl is a Lefschetz complex. It provides

us with the basic model of phase space for combinatorial topological dynamics. In view of the combinatorial,

and therefore discrete, character of the dynamical behavior, a Lefschetz complex is not a typical phase space

in the sense of classical dynamics. While the latter one is usually a Euclidean space, a Lefschetz complex

is basically a combinatorial model of it. In the following, we provide its precise mathematical definition, and

explain how it can be created and modified within the package. We also discuss two important special cases,

namely simplicial complexes and cubical complexes.

3.1 Basic Lefschetz Terminology

The original definition of a Lefschetz complex can be found in [Lef42], where it was simply referred to as a

complex.

Definition: Lefschetz complex

Let F denote an arbitrary field. Then a pair (X,κ) is called a Lefschetz complex over F if X =
(Xk)k∈N0

is a finite set with N0-gradation, and κ : X ×X → F is a mapping such that

κ(x, y) 6= 0 implies x ∈ Xk and y ∈ Xk−1,

and such that for any x, z ∈ X one has

∑
y∈X

κ(x, y)κ(y, z) = 0 .

The elements of X are referred to as cells, the value κ(x, y) ∈ F is called the incidence coefficient

of the cells x and y, and the map κ is the incidence coefficient map. In addition, one defines the
dimension of a cell x ∈ Xk as the integer k, and denotes it by k = dimx. Whenever the incidence
coefficient map is clear from context, we often just refer to X as the Lefschetz complex.

At first glance the above definition can seem daunting. However, it is based on a straightforward geometric

idea. A Lefschetz complex is a structure that is built from elementary building blocks called cells. Each cell has

a dimension associated with it, and it is topologically an open ball of this dimension. Thus, cells of dimension

22

https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 3. LEFSCHETZ COMPLEXES 23

zero are points, also called vertices. Cells of dimension one are open curve segments, which we call edges,

and two-dimensional cells are called faces and take the form of open two-dimensional membranes.

The incidence coefficient map encodes how these cells are glued together to form the Lefschetz complex X .
In order to shed more light on this, consider the boundary map ∂ which is defined on cells via

∂x =
∑
y∈X

κ(x, y)y .

This map sends a cell x of dimension k to a specific linear combination of cells of dimension k − 1, called the
boundary of x. By using ideas from linear algebra, the boundary map can be extended to map a general linear
combination of k-dimensional cells to the corresponding linear combination of the separate boundaries. For
example, if one chooses the field F = Q of rationals, one has ∂(x1 − 2x2) = ∂x1 − 2∂x2. Notice that using

this extended definition of the boundary map, one can rewrite the summation condition in the definition of a

Lefschetz complex in the equivalent form

∂(∂x) = 0 for all cells x ∈ X .

In other words, the boundary of any cell is itself boundaryless.

With the help of the boundary map, one can often infer the overall geometric structure of a Lefschetz complex

X . For this, think of a Lefschetz complex as being build from the ground up in the following way. First, start

by putting down all vertices of X at different locations in some ambient space. Since the boundary of each

one-dimensional cell is made up of a linear combination of vertices, one can then add a curve segment for

each one-dimensional cell, which connects the vertices in its boundary. Note that in the general version of a

Lefschetz complex it is possible that an edge has only one vertex in its boundary, or maybe even none, and

in these cases the edge is either only connected to the one boundary vertex, or it is an open curve segment

connected to no vertex at all, respectively. Continue in this fashion to add two-dimensional faces to fill in the

space between the edges in its boundary, and so on for higher dimensions. Needless to say, in the case of a

general complicated Lefschetz complex this procedure is of limited use, since the boundary of a cell can be an

arbitrary linear combination of cells, with coefficients that can be any nonzero numbers in the field F . Yet, in
many simple cases the above intuition is sufficient.

In addition to the Lefschetz complex definition, there are a handful of other concepts which will be important

for our discussion of Lefschetz complexes. Specifically, the following notions are important:

• A facet of a cell x ∈ X is any cell y which satisfies κ(x, y) 6= 0.

• One can define a partial order on the cells of X by letting x ≤ y if and only if for some integer n ∈ N
there exist cells x = x1, . . . , xn = y such that xk is a facet of xk+1 for all k = 1, . . . , n − 1. It is not
difficult to show that this defines a partial order on X , i.e., this relation is reflexive, antisymmetric, and
transitive. We call this partial order the face relation. Moreover, if x ≤ y then x is called a face of y.

• A subset C ⊂ X of a Lefschetz complex is called closed, if for every x ∈ C all the faces of the cell x
are also contained in the subset C.

• The closure of a subset C ⊂ X is the collection of all faces of all cells in C, and it is denoted by clC.
Thus, a subset of a Lefschetz complex is closed if and only if it equals its closure.

• A subset S ⊂ X is called locally closed, if its mouth moS = clS \ S is closed. Note that every closed
set is automatically locally closed, but the reverse implication is usually false.

CHAPTER 3. LEFSCHETZ COMPLEXES 24

While the first two points merely introduce notation for describing the combinatorial boundary of cells, the

remaining three points establish important topological concepts. In fact, the above definition of closedness

defines a topology on the Lefschetz complex X , which is the so-called Alexandrov topology from [Ale37]. As

usual in the field of topology, a subset of a Lefschetz complex will be called open, if and only if its complement

is closed.

We would like to point out that while the concept of local closedness is rarely considered in standard topology

courses, it is of utmost important for the study of combinatorial topological dynamics. For the moment, we

just mention the following result:

Theorem: Lefschetz subcomplexes

LetX be a Lefschetz complex over a field F , and let κ : X ×X → F denote its incidence coefficient

map. Then a subset S ⊂ X is again a Lefschetz complex, with respect to the restriction of κ to S×S,
if the subset S is locally closed.

This result goes back to [MB09, Theorem 3.1]. In other words, in the category of Lefschetz complexes local

closedness arises naturally. Due to its importance, we also mention the following two equivalent formulations:

• A subset S ⊂ X is locally closed, if and only if it is the difference of two closed subsets of X .

• A subset S ⊂ X is locally closed, if and only if it is an interval with respect to the face relation on X ,
i.e., whenever we have three cells with S 3 x ≤ y ≤ z ∈ S, then one has to have y ∈ S as well.

The proof of these characterizations can be found in [MW23, Proposition 3.2] and [LKMW23, Proposition 3.10],

respectively.

Lefschetz complexes are a very general mathematical concept, and they can be rather confusing at first sight.

Nevertheless, they do encompass other complex types, which are more geometric in nature. As we already saw

in the tutorial, every simplicial complex is automatically a Lefschetz complex, and we will further elaborate on

this connection below. In addition, we will also demonstrate that cubical complexes are Lefschetz complexes.

More general, any regular CW complex is a Lefschetz complex as well. For more details on this, we refer to the

definition in [Mas91] and the discussion in [DKMW11].

3.2 Lefschetz Complex Data Structure

For the efficient and easy manipulation of Lefschetz complexes in ConleyDynamics.jl we make use of a specific

composite data type:

ConleyDynamics.LefschetzComplex – Type.

LefschetzComplex

Collect the Lefschetz complex information in a struct.

The struct is created via the following fields:

• labels::Vector{String}: Vector of labels associated with cell indices

• dimensions::Vector{Int}: Vector cell dimensions

• boundary::SparseMatrix: Boundary matrix, columns give the cell boundaries

https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 3. LEFSCHETZ COMPLEXES 25

It is expected that the dimensions are given in increasing order, and that the square of the boundary matrix

is zero. Otherwise, exceptions are raised. In addition, the following fields are created during initialization:

• ncells::Int: Number of cells

• dim::Int: Dimension of the complex

• indices::Dict{String,Int}: Dictionary for finding cell index from label

The coefficient field is specified by the boundary matrix.

source

The fields of this struct relate to the mathematical definition of a Lefschetz complex X in the following way:

• Internally, every cell of the Lefschetz complex is represented by an integer between 1 and the to-

tal number of cells. However, in order to make it easier to interpret the results of computations,

each cell in a Lefschetz complex has to also be given a label. These labels are contained in the field

labels::Vector{String}, where labels[k] gives the label of cell k.

• The vector dimensions is a Vector{Int} and collects the dimensions of the cells. In other words, the

cell which is indexed by the integer k has dimension dimensions[k]. It is expected that the dimension

vector is increasing, and the constructor method will verify this. Otherwise, an error is triggered.

• The incidence coefficient map κ is encoded in the sparse matrix boundary. This matrix is a square

matrix with ncells rows and columns. The k-th column contains the incidence coefficients κ(k, ·) in
the sense that the entry in row m and column k equals the value κ(k,m). Since for most Lefschetz
complexes the majority of the incidence coefficients is zero, the matrix is represented using the sparse

format SparseMatrix, which is described in more detail in Sparse Matrices. An exception is raised if the

square of the boundary matrix is not zero.

When creating a Lefschetz complex, only the above three items have to be specified, as they define a unique

Lefschetz complex X . In other words, a Lefschetz complex is generally created via the command

lc = LefschetzComplex(labels, dimensions, boundary)

During the construction of the Julia object, additional fields are initialized which simplify working with a Lef-

schetz complex:

• The integer ncells gives the total number of cells inX . Internally, these cells are numbered by integers
ranging from 1 to ncells.

• The integer dim describes the overall dimension of the Lefschetz complex, which is the largest dimension

of a cell.

• In order to easily determine the integer index for a cell with a specific label, the field indices contains a

dictionary of type Dict{String,Int} which maps labels to indices. For example, if a cell has the label

"124.010", then the associated integer index is given by indices["124.010"].

As mentioned above, note however that an object of type LefschetzComplex is created by passing only the

first three the field items in the order given in LefschetzComplex. Consider for example the Lefschetz complex

from Figure 4 in [MW23], see also the left complex in the next image. This complex consists of six cells with

labels A, B, a, b, c, and alpha, and we initialize the vector of labels, the cell index dictionary, and the cell

dimensions via the commands

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/conley/composite_types.jl#L3-L19

CHAPTER 3. LEFSCHETZ COMPLEXES 26

Figure 3.1: Two sample Lefschetz complexes

ncL = 6

labelsL = Vector{String}(["A","B","a","b","c","alpha"])

cdimsL = [0, 0, 1, 1, 1, 2]

The boundary matrix can then be defined using

bndmatrixL = zeros(Int, ncL, ncL)

bndmatrixL[[1,2],3] = [1; 1] # a

bndmatrixL[[1,2],4] = [1; 1] # b

bndmatrixL[[1,2],5] = [1; 1] # c

bndmatrixL[[3,4],6] = [1; 1] # alpha

bndsparseL = sparse_from_full(bndmatrixL, p=2)

Notice that we first create the matrix as a regular integer matrix, and then use the function sparse_from_full

to turn it into sparse format over the fieldGF (2)with characteristic p = 2. This is the most convenient method

for small boundary matrices, yet for larger ones it is better to use the function sparse_from_lists. Finally,

the Lefschetz complex is created using

lcL = LefschetzComplex(labelsL, cdimsL, bndsparseL)

Lefschetz complexes do not always have to contain cells of all dimensions. For example, the Lefschetz complex

shown on the right side of the figure has no vertices, and it can be created using the commands

ncR = 4

labelsR = Vector{String}(["a","b","c","alpha"])

cdimsR = [1, 1, 1, 2]

bndmatrixR = zeros(Int, ncR, ncR)

bndmatrixR[[1,2,3],4] = [1; 1; 1] # alpha

bndsparseR = sparse_from_full(bndmatrixR, p=2)

lcR = LefschetzComplex(labelsR, cdimsR, bndsparseR)

While Lefschetz complexes can always be created in ConleyDynamics.jl in this direct way, it is often more con-

venient to make use of special types, such as simplicial and cubical complexes, and then restrict the complex

to a locally closed set using the function lefschetz_subcomplex.

https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 3. LEFSCHETZ COMPLEXES 27

3.3 Simplicial Complexes

One of the earliest types of complexes that have been studied in topology are simplicial complexes. As already

mentioned in the tutorial, an abstract simplicial complexX is a finite collection of finite sets, called simplices,

which is closed under taking subsets. Each simplex σ has a dimension dimσ, which is one less than the
number of its elements.

In order to see why every simplicial complex is automatically a Lefschetz complex, we need to be able to

define the incidence coefficient map κ. For this, we make use of some notions from [Mun84]. Let X0 denote

the collection of all vertices of the simplicial complex X . Then we use the notation

σ = [v0, v1, . . . , vd] with vk ∈ X0

to describe a d-dimensional simplex. Note that even though every simplex inX is just the set of its vertices, in

the above representation we pick an order of the vertices, called an orientation of the simplex. This orientation

can be chosen arbitrarily, and there are two equivalence classes of orientations. To get from one orientation

to the other, one just has to exchange two vertices, and we write

[. . . , vi, . . . , vj , . . .] = − [. . . , vj , . . . , vi, . . .] .

For more complicated reorderings, one has to represent the corresponding vertex permutation as a sequence

of such exchanges. Using these oriented simplices we can define the boundary operator

∂σ = ∂ [v0, . . . , vd] =

d∑
i=0

(−1)i [v0, . . . , v̂i, . . . , vd] ,

where the notation v̂i means that in the simplex behind the summation sign on the right-hand side the vertex
vi is omitted. For example, for a two-dimensional simplex one obtains

∂ [v0, v1, v2] = [v1, v2]− [v0, v2] + [v0, v1] .

Thus, if one chooses a total order of all the vertices in the simplicial complex, and orients the individual simplices

in such a way that their vertices are arranged using this overall order, then the incidence coefficient map is

given by

κ ([v0, . . . , vi, . . . , vd] , [v0, . . . , v̂i, . . . , vd]) = (−1)i .

If some or all of the simplices are represented by different orientations, one simply has to multiply the value

(−1)i by the sign of a suitable vertex permutation. In either case, one can show that the so-defined map κ
does indeed satisfy the definition of a Lefschetz complex. For more details, see [Mun84, Lemma 5.3].

In ConleyDynamics.jl there are three basic commands for defining a simplicial complex:

https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 3. LEFSCHETZ COMPLEXES 28

• create_simplicial_complex is the most general method, and it expects two input arguments. The first

is usually called labels, and it has to have the data type Vector{String}. This vector lists the labels

for each vertex. It is important that all of these labels have exactly the same number of characters. The

second argument is usually called simplices, and it lists as many simplices as necessary for defining

the underlying simplicial complex. This means that in practice one only needs to include the simplices

which are not faces of higher-dimensional ones, see also the example below. The variable simplices

can either be of type Vector{Vector{String}} or Vector{Vector{Int}}, depending on whether the

vertices are identified via their labels or integer indices, respectively. Finally, the optional parameter p

can be used to specify the underlying field for the boundary matrix. If p is a prime, then F = GF (p),
while for p = 0 the function uses F = Q. If the argument p is ommitted, the function defaults to p =

2.

• create_simplicial_rectangle expects two integer arguments nx and ny, and then creates a triangu-

lation of the square [0, nx]× [0, ny] by subdividing every unit square into four triangles which meet at
the center of the square. As before, the optional parameter p specifies the underlying field.

• create_simplicial_delaunay creates a planar Delaunay triangulation inside a planar rectangle. The

function selects a random sample of points inside the box, while either trying to maintain a minimum

distance between the points, or just using a prespecified number of points. More details on these two

options can be found in the documentation for the function.

To illustrate the first of these functions, consider the commands

labels = ["A","B","C","D","E","F","G","H"]

simplices = [["A","B"],["A","F"],["B","F"],["B","C","G"],["D","E","H"],["C","D"],["G","H"]]

sc = create_simplicial_complex(labels,simplices)

These create the simplicial complex sc, in the form of a Lefschetz complex. Note that the above commands

only specify the labels for the vertices. The labels for simplices of dimension at least one are automatically

generated by concatenating the labels for their vertices, sorted in lexicographic order. This can be seen in the

following Julia output:

julia> sc.labels[end-4:end]

5-element Vector{String}:

"DH"

"EH"

"GH"

"BCG"

"DEH"

The simplicial complex sc can be visualized using the commands

coords = [[0,0],[2,0],[4,0],[6,0],[8,0],[1,2],[4,2],[6,2]]

ldir = [3,3,3,3,3,1,1,1]

fname = "lefschetzex2.pdf"

plot_planar_simplicial(sc,coords,fname,labeldir=ldir,labeldis=10,hfac=2,vfac=1.5,sfac=50)

Similarly, the commands

CHAPTER 3. LEFSCHETZ COMPLEXES 29

Figure 3.2: First sample simplicial complex

Figure 3.3: Second sample simplicial complex

sc2, coords2 = create_simplicial_rectangle(5,2)

fname2 = "lefschetzex3.pdf"

plot_planar_simplicial(sc2,coords2,fname2,hfac=2.0,vfac=1.2,sfac=75)

define and illustrate a second simplicial complex, which triangularizes a rectangle in the plane.

For a demonstration of the Delaunay triangulation approach, please see Analyzing Planar Vector Fields.

3.4 Cubical Complexes

The second important special case of a Lefschetz complex is called cubical complex, and it has been discussed

in detail in [KMM04]. In the following, we only present the definitions that are essential for our purposes.

Loosely speaking, a cubical complex is a collection of cubes of varying dimensions in some Euclidean space

Rd. More precisely, we say that an interval I ⊂ R is an elementary interval if it is of the form

I = [`, `+ 1] or I = [`, `] for some integer ` ∈ Z .

If the elementary interval I consists of only one point, then it is called degenerate, and it is nondegenerate
if it is of length one. Elementary intervals are the building blocks for the cubes in a cubical complex. For a

complex in Rd, an elementary cube Q is of the form

Q = I1 × I2 × . . .× Id ⊂ Rd ,

CHAPTER 3. LEFSCHETZ COMPLEXES 30

where I1, . . . , Id are elementary intervals. The dimension dimQ of an elementary cube is given by the number

of nondegenerate intervals in its representation. For example, the cubeQ = [0, 0]×[1, 1] is a zero-dimensional
elementary cube in R2 which contains only the point (0, 1), while the elementary cube R = [2, 2] × [3, 4] is
one-dimensional, and consists of the closed vertical line segment between the points (2, 3) and (2, 4).

After these preparations, the definition of a cubical complex is now straightforward. A cubical complex X in

Rd is a finite collection of elementary cubes inRd which is closed under the inclusion of elementary subcubes.

More precisely, if Q ∈ X is an elementary cube in the cubical complex, and if R ⊂ Q is any elementary cube

contained in Q, then one also has R ∈ X .

The definition of a cubical complex is reminiscent of that of a simplicial complex. It is therefore not surprising

that also in the cubical case one can describe the incidence coefficient map κ explicitly, and thus recognize a
cubical complex as a Lefschetz complex. For this, we need more notation.

Let Q = I1 × I2 × . . . × Id denote an elementary cube, and let the nondegenerate elementary intervals in
this decomposition be given by Ii1 , . . . , Iin , where Iij = [kj , kj + 1] and j = 1, . . . , n = dimQ. For every
index j, we further define the two (n− 1)-dimensional elementary cubes

Q−
j = I1 × . . .× Iij−1 × [kj , kj] × Iij+1 × . . .× Id ,

Q+
j = I1 × . . .× Iij−1 × [kj + 1, kj + 1] × Iij+1 × . . .× Id .

Geometrically, the two elementary cubes Q−
j and Q+

j are directly opposite sides of the elementary cube Q.
Using them, one can define the algebraic boundary of the cube as

∂Q =

n∑
j=1

(−1)j−1
(
Q+

j −Q−
j

)
.

This formula is the cubical analogue of the boundary operator in a simplicial complex, and it allows us to define

the incidence coefficient map via

κ
(
Q, Q+

j

)
= (−1)j−1

and κ
(
Q, Q−

j

)
= (−1)j , for all j = 1, . . . , n .

For all remaining pairs of elementary cubes inX we let κ = 0. Then it was shown in [KMM04, Proposition 2.37]
that the so-defined incidence coefficient map satisfies the summation condition in the definition of a Lefschetz

complex, i.e., we have ∂(∂Q) = 0 for everyQ ∈ X . This in turn implies that every cubical complex is indeed
a Lefschetz complex.

Cubical complexes in ConleyDynamics.jl are a little more restricted. Since a cubical complex in the above

sense is always finite, one can assume without loss of generality that the left endpoints of all involved ele-

mentary intervals are nonnegative. In other words, we always assume that the cubical complex only contains

elementary cubes from the set (R+
0)

d. This allows for a simple encoding of elementary cubes via labels of a

fixed length, and without having to worry about the sign of an integer.

To describe this, fix a dimension d of the ambient space. Then every elementary cube in (R+
0)

d has the

following label, which depends on a coordinate width L:

• The first d ·L characters of the label encode the starting points of the elementary intervals I1, . . . , Id in
the standard representation of the elementary cube. For this, the starting points, which are nonnegative

integers, are concatenated without spaces, but with leading zeros. For example, with L = 2 the string
"010203" would correspond to the starting points 1, 2, and 3. Note that for given coordinate width L,
one can only encode starting points between 0 and 10L − 1.

https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 3. LEFSCHETZ COMPLEXES 31

• The next entry in the label string is a period ..

• The remaining d characters of the string are integers 0 or 1, which give the interval lengths of I1, . . . , Id.

For example, for L = 2 the string "030600.000" corresponds to the point (3, 6, 0) in three dimensions. Sim-
ilarly, the label "030600.101" represents the two-dimensional elementary cube [3, 4] × [6, 6] × [0, 1] ⊂ R3.

Note, however, that the label representation is not unique, since it depends on the coordinate width L. Thus,
with L = 1 the latter cube could also be written as "360.101", or with L = 3 as "003006000.101". As we will
see in a moment, though, within a given cubical complex all labels have to use the same coordinate

width L! This implies in particular that for a given coordinate width L one can only represent bounded cubical
complexes which are contained in the d-dimensional box [0, 10L − 1]d.

The following three helper functions simplify the work with these types of cube labels:

• cube_field_size determines the field sizes of a given cube label. The first return value gives the

dimension d of the ambient space, while the second value returns the coordinate width L.

• cube_information returns all information encoded in the cube label. The function returns an integer

vector of length 2d + 1, where d is the dimension of the ambient space. The first d entries give the
vector of elementary interval starting points, while the next d values yield the corresponding interval
lengths. The last entry specifies the dimension of the cube.

• cube_label creates a label from a cube's coordinate information. As function parameters, one has to

specify d and L, and then pass an integer vector of length six which specifies the coordinates of the
starting points and the interval lengths as in the previous item.

In ConleyDynamics.jl there are four basic commands for defining a cubical complex and working with it:

• create_cubical_complex creates a cubical complex in the Lefschetz complex data format. The complex

is specified via a list of all the highest-dimensional cubes which are necessary to define the cubical

complex. For this, every cube has to be given using the above-described special label format, with the

same coordinate width L. In other words, all label strings have to be of the same length! If the optional
parameter p is specified, the complex will be defined over a field with characteristic p, analogous to the

case of a simplicial complex. If the characteristic is not specified, then the function defaults to the field

GF (2).

• get_cubical_coords determines the coordinates of all vertices of a given cubical complex from the

cube labels. This vector can then be used for plotting purposes, see below.

• create_cubical_rectangle creates a cubical complex covering a rectangle in the plane. The rectangle

is given by the subset [0, nx] × [0, ny] of the plane, where the nonnegative integers nx and ny have

to be passed as arguments to the function. The function returns the cubical complex, and a vector of

coordinates for the vertices. The latter can also be randomly perturbed as described in more detail in

the function documentation.

• create_cubical_box creates a cubical complex covering a box in three-dimensional Euclidean space.

The box is given by the subset [0, nx]× [0, ny]× [0, nz] of space, where the nonnegative integers nx,
ny, and nz have to be passed as arguments to the function. The optional parameters are the same as

in the planar version.

To illustrate the first of these functions, consider the commands

https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 3. LEFSCHETZ COMPLEXES 32

Figure 3.4: First sample cubical complex

Figure 3.5: Second sample cubical complex

cubes = ["00.11", "01.01", "02.10", "11.10", "11.01", "22.00", "20.11", "31.01"]

cc = create_cubical_complex(cubes)

These create the cubical complex cc, in the form of a Lefschetz complex. It can be visualized using the

commands

coords = get_cubical_coords(cc)

fname = "lefschetzex4.pdf"

plot_planar_cubical(cc,coords,fname,hfac=2.2,vfac=1.1,cubefac=60)

Similarly, the commands

cc2, coords2 = create_cubical_rectangle(5,2)

fname2 = "lefschetzex5.pdf"

plot_planar_cubical(cc2,coords2,fname2,hfac=1.7,vfac=1.2,cubefac=75)

define and illustrate a second cubical complex.

Finally, it is also possible to perturb the vertices in a cubical rectangle to obtain a Lefschetz complex consisting

of quadrilaterals in the plane. This can be accomplied as follows:

CHAPTER 3. LEFSCHETZ COMPLEXES 33

Figure 3.6: A randomly perturbed cubical complex

cc3, coords3 = create_cubical_rectangle(5,2,randomize=0.2)

fname3 = "lefschetzex6.pdf"

plot_planar_cubical(cc3,coords3,fname3,hfac=1.7,vfac=1.2,cubefac=75)

The resulting Lefschetz complex is visualized in the last figure of this section.

3.5 Lefschetz Complex Operations

Once a Lefschetz complex has been created, there are a number of manipulations and queries that one has

to be able to perform on the complex. At the moment, ConleyDynamics.jl supplies a number of functions for

this. The following three functions provide basic information:

• lefschetz_field returns the field F over which the Lefschetz complex is defined as a String.

• lefschetz_is_closed determines whether a given Lefschetz complex cell subset is closed or not.

• lefschetz_is_locally_closed checks whether a given Lefschetz complex cell subset is locally closed

or not.

The next set of functions can be used to extract certain topological features from a Lefschetz complex:

• lefschetz_boundary computes the support of the boundary ∂σ of a Lefschetz complex cell σ. In other
words, it returns the vector of all facets of σ. The cell can either be specified via its index or its label,
and the return format corresponds to the input format.

• lefschetz_coboundary returns all cells which lie in the coboundary of the specified cell σ, i.e., it returns
all cells which have σ as a facet.

• lefschetz_closure determines the closure of a given cell subset, i.e., the union of all faces of cells in

the cell subset.

• lefschetz_openhull computes the open hull of a cell subset, i.e., the smallest open set which contains

the given cell subset.

• lefschetz_lchull finds the locally closed hull of a Lefschetz complex subset. This is the smallest locally

closed set which contains the given cell subset. One can show that it is the intersection of the closure

and the open hull of the cell subset.

https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 3. LEFSCHETZ COMPLEXES 34

• lefschetz_clomo_pair determines the closure-mouth-pair associated with a Lefschetz complex subset.

• lefschetz_skeleton computes the k-dimensional skeleton of a Lefschetz complex or of a given Lef-
schetz complex subset. While in the first case the k-skeleton of the full Lefschetz complex is returned,
in the second case it returns the k-skeleton of the closure of the given subset.

• manifold_boundary returns a list of cells which form the "manifold boundary" of the given Lefschetz

complex. More precisely, if the complex has dimension d, then it determines all cells of dimension d−1
which have at most one cell in their coboundary, as well as all cells of dimensions less than d− 1 which
have no cell in their coboundary, and finally returns the closure of the resulting cell subset.

The following functions create Lefschetz subcomplexes from a Lefschetz complex:

• lefschetz_subcomplex determines a Lefschetz subcomplex from a given Lefschetz complex. The sub-

complex has to be locally closed, and it is given by a collection of cells.

• lefschetz_closed_subcomplex extracts a closed Lefschetz subcomplex from the given Lefschetz com-

plex. The subcomplex is the closure of the specified collection of cells.

• permute_lefschetz_complex determines a new Lefschetz complex which is obtained from the original

one by a permutation of the cells. Note that the permutation has to respect the ordering of the cells

by dimension, otherwise an error is raised. In other words, the permutation has to decompose into

permutations within each dimension. This is automatically done if no permutation is explicitly specified

and the function creates a random one.

There are also two helper functions which can sometimes be useful:

• lefschetz_gfp_conversion changes the base field of the given Lefschetz complex from the rationals

Q to a finite field GF (p). Note that it is not possible to perform the reverse conversion.

• lefschetz_filtration computes a filtration on a Lefschetz subset. Based on integer filtration values

assigned to some cells of the given Lefschetz complex, it determines the smallest closed subcomplex

lcsub which contains all cells with nonzero filtration values, as well as filtration values fvalsub on this

subcomplex, which give rise to a filtration of closed subcomplexes, and which can be used to compute

persistent homology.

In addition, ConleyDynamics.jl provides the following helper functions for the fundamental objects of cells and

cell subsets, which can be represented either by integer cell indices or by cell labels:

• convert_cells converts a vector of cells from integer to label format, or vice versa.

• convert_cellsubsets converts a vector of cell subsets from integer to label format, and vice versa.

Finally, there are a couple of ccordinate helper functions which allow for the transformation of vertex coordi-

nates in a Lefschetz complex:

• convert_planar_coordinates transforms a given collection of planar coordinates in such a way that

the extreme coordinates fit precisely in a given rectangle in the plane.

• convert_spatial_coordinates transforms a given collection of spatial coordinates in such a way that

the extreme coordinates fit precisely in a given rectangular box in space.

For more details on the usage of any of these functions, please see their documentation in the API section of

the manual.

https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 3. LEFSCHETZ COMPLEXES 35

3.6 References

See the full bibliography for a complete list of references cited throughout this documentation. This section

cites the following references:

[Ale37] P. Alexandrov. Diskrete Räume. Mathematiceskii Sbornik (N.S.) 2, 501–518 (1937).

[DKMW11] P. Dłotko, T. Kaczynski, M. Mrozek and T. Wanner. Coreduction homology algorithm for regular

CW-complexes. Discrete & Computational Geometry 46, 361–388 (2011).

[KMM04] T. Kaczynski, K. Mischaikow and M. Mrozek. Computational Homology. Vol. 157 of Applied

Mathematical Sciences (Springer-Verlag, New York, 2004).

[Lef42] S. Lefschetz. Algebraic Topology. Vol. 27 of American Mathematical Society Colloquium Publications

(American Mathematical Society, New York, 1942).

[LKMW23] M. Lipinski, J. Kubica, M. Mrozek and T. Wanner. Conley-Morse-Forman theory for generalized

combinatorial multivector fields on finite topological spaces.

Journal of Applied and Computational Topology 7, 139–184 (2023).

[Mas91] W. S. Massey. A Basic Course in Algebraic Topology. Vol. 127 of Graduate Texts in Mathematics

(Springer-Verlag, New York, 1991).

[MB09] M. Mrozek and B. Batko. Coreduction homology algorithm. Discrete & Computational Geometry 41,

96–118 (2009).

[MW23] M. Mrozek and T. Wanner. Connection matrices in combinatorial topological dynamics,

arXiv:2103.04269 (2023).

[Mun84] J. R. Munkres. Elements of Algebraic Topology (Addison-Wesley, Menlo Park, 1984).

https://doi.org/10.1007/s00454-010-9303-y
https://doi.org/10.1007/s41468-022-00102-9
https://doi.org/10.48550/arXiv.2103.04269
https://doi.org/10.48550/arXiv.2103.04269

Chapter 4

Homology

Conley's theory for the qualitative study of dynamical systems is based on fundamental concepts from algebraic

topology. One of these is homology, which studies the topological properties of spaces using algebraic means.

As part of ConleyDynamics.jl a number of homology methods are included. It should be noted that these

algorithms are not meant for truly large-scale problems, but mostly for illustrative purposes. They are based

on the persistence algorithm described in [EH10], and have been extended to work for arbitrary Lefschetz

complexes over either the rationals or a finite field of prime order. For more serious applications one could use

professional implementations such as Gudhi, see [GUD24].

4.1 Lefschetz Complex Homology

The most important notion of homology used in ConleyDynamics.jl is Lefschetz homology. It generalizes both

simplicial homology as described in [Mun84], and cubical homology in the sense of [KMM04]. In order to fix

our notation, we provide a brief introduction in the following. For more details, see [Lef42].

As we saw earlier, a Lefschetz complex X is a collection of cells with associated nonnegative dimensions,

together with a boundary map ∂ which is induced by the incidence coefficient map κ. The fundamental idea
behind homology is to turn this underlying information into an algebraic form in such a way that the boundary

map becomes a linear map. For this, define the k-th chain group as

Ck(X) =

{
m∑
i=1

αiσi : α1, . . . , αm ∈ F and σ1, . . . , σm ∈ Xk

}
.

Since Xk denotes the collection of all cells of dimension k, this definition can be rephrased by saying that
Ck(X) consists of all formal linear combinations of k-dimensional cells with coefficients in the underlying field
F . It is not difficult to see that Ck(X) is in fact a vector space over F . Moreover, its dimension is equal to the
number of k-dimensional cells inX . The collection of all chain groups is C(X) = (Ck(X))k∈Z, where we let
Ck(X) = {0} for all k < 0 and k > dimX .

We now turn our attention to the boundary map. It was already explained how the incidence coefficient map

κ can be used to define the boundary ∂σ ∈ Ck−1(X) for every k-dimensional cell σ ∈ Xk. If one further

defines

∂

(
m∑
i=1

αiσi

)
=

m∑
i=1

αi∂σi ∈ Ck−1(X) for

m∑
i=1

αiσi ∈ Ck(X) ,

36

https://almost6heads.github.io/ConleyDynamics.jl
https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 4. HOMOLOGY 37

then one obtains a map ∂ : Ck(X) → Ck−1(X). It is not difficult to verify that this map is both well-defined
and linear. Sometimes, we write ∂k instead of ∂ to emphasize that we consider the boundary map defined on
the k-th chain group Ck(X).

Altogether, the above definitions have equipped us with a sequence of vector spaces and maps between them

in the form

. . .
∂k+2−→ Ck+1(X)

∂k+1−→ Ck(X)
∂k−→ Ck−1(X)

∂k−1−→ . . .
∂1−→ C0(X)

∂0−→ {0} ∂−1−→ . . . ,

and the properties of a Lefschetz complex further imply that

∂k ◦ ∂k+1 = 0 for all k ∈ Z.

In other words, the pair (C(X), ∂) is a chain complex, which consists of a sequence of vector spaces over
F and linear maps between them. Recall from linear algebra that any linear map induces two important

subspaces, which in the context of algebraic topology are given special names as follows:

• The elements of the subspace Zk(X) = ker ∂k are called the k-cycles of X .

• The elements of the subspace Bk(X) = im ∂k+1 are called the k-boundaries of X .

Both of these vector spaces are subspaces of the k-th chain group Ck(X). Furthermore, in view of the above
identity ∂k ◦ ∂k+1 = 0, one immediately obtains the subspace inclusion Bk(X) ⊂ Zk(X). We can therefore
define the quotient space

Hk(X) = Zk(X)/Bk(X) = ker ∂k/im ∂k+1.

This vector space is called the k-th homology group of the Lefschetz complex X . It is again a vector space
over F , and therefore its dimension provides important information. In view of this, the dimension of the k-th
homology group Hk(X) is called the k-th Betti number of X , and abbreviated as βk(X) = dimHk(X).

In order to shed some light on the actual meaning of homology, and in particular the Betti numbers, we turn

to an example. Consider the simplicial complex sc that was already introduced in the Tutorial, and which can

be created using the commands

labels = ["A","B","C","D","E","F"]

simplices = [["A","B"],["A","C"],["B","C"],["B","D"],["D","E","F"]]

sc = create_simplicial_complex(labels,simplices)

This two-dimensional simplicial complex is shown in the figure.

For simplicity, we consider the associated Lefschetz complex X over the field F = GF (2). Then chains in a
chain group are just a sum of individual cells of the same dimension.

In this simple example, one can determine the cycles and boundaries for k = 1 directly. The vector space
Z1(X) of 1-cycles contains the two nonzero chains c1 = AB+BC+AC and c2 = DE+EF+DF, since one
can verify that ∂c1 = ∂c2 = 0. These are, however, not all nontrivial 1-cycles, as their sum c1 + c2 is another

CHAPTER 4. HOMOLOGY 38

Figure 4.1: The simplicial complex from the tutorial

one. Thus, the first cycle group is given by Z1(X) = {0, c1, c2, c1+c2}. It is a vector space over F = GF (2)
of dimension two, and any two nonzero elements of Z1(X) form a basis. What about the 1-boundaries? The
simplicial complex X contains only one 2-cell, namely DEF, and its boundary is given by the chain c2. Thus,
the first boundary group is given by B1(X) = {0, c2}, which is a one-dimensional vector space over F .

Combined, one can show that the first homology group H1(X) consists of the two equivalence classes

H1(X) = {B1(X), c1 +B1(X)} ,

where the class B1(X) is the zero element in H1(X). This implies that the first homology group is one-
dimensional, and we have β1(X) = 1. In some sense, the basis element of H1(X), which is the unique
nonzero equivalence class given by c1 +B1(X), is represented by the cycle c1.

The above mathematically precise description can be summarized as follows. All three nontrivial cycles in

Z1(X) have the potential to enclose two-dimensional holes in the simplicial complexX , since they are chains
without boundary. However, some of these potential holes have been filled in by two-dimensional cells. Thus,

while c1 does indeed represent a hole, the chain c2 does not, since its interior is filled in by DEF. Note that
the cycle c1+ c2 does not create a second hole, since we have (c1+ c2)− c1 = c2 ∈ B1(X). In other words,
the first Betti number counts the number of independent holes in the complex X .

One can extend this discussion also to other dimensions and to general Lefschetz complexes X . In this way,
one obtains the following informal interpretations of the Betti numbers:

• β0(X) counts the number of connected components of X ,

• β1(X) counts the number of independent holes in X ,

• β2(X) counts the number of independent cavities in X .

In general, one can show that βk(X) represents the number of independent k-dimensional holes in the Lef-
schetz complex X . For more details, see [Mun84].

The package ConleyDynamics.jl provides one function to compute standard homology:

• homology expects one input argument, which has to be of the Lefschetz complex type LefschetzComplex.

It returns a vector betti of integers, whose length is one more than the dimension of the complex. The

k-th Betti number βk(X) is returned in betti[k+1].

https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 4. HOMOLOGY 39

Figure 4.2: Sample simplicial complex

We would like to point out that the field F is implicit in the data structure for the Lefschetz complex X , and
therefore it does not have to be specified. It can always be queried using the function lefschetz_field. For

the above example one obtains

julia> homology(sc)

3-element Vector{Int64}:

1

1

0

This clearly gives the correct Betti numbers, as we have already seen that this simplicial complex has one hole,

and it is obviously connected.

The simplicial complex shown in the second figure can be created using the commands

labels2 = ["A","B","C","D","E","F","G","H"]

simplices2 = [["A","B"],["A","F"],["B","F"],["B","C","G"],["D","E","H"],["C","D"],["G","H"]]

sc2 = create_simplicial_complex(labels2,simplices2)

and its homology can then be determined as follows:

julia> homology(sc2)

3-element Vector{Int64}:

1

2

0

This complex is also connected, and therefore one has β0(X) = 1. However, this time one obtains two
independent holes, which results in β1(X) = 2.

Similarly, the cubical complex depicted in the next figure can be generated via

cubes = ["00.11", "01.01", "02.10", "11.10", "11.01", "22.00", "20.11", "31.01"]

cc = create_cubical_complex(cubes)

and its Betti numbers are given by

CHAPTER 4. HOMOLOGY 40

Figure 4.3: Sample cubical complex

julia> homology(cc)

3-element Vector{Int64}:

2

1

0

In this case, the complex has two components and one hole. As a final example, consider a simplicial com-

plex which consists of the manifold boundary of a single cube. Such a complex can be generated using the

commands

cc2,~ = create_cubical_box(1, 1, 1)

mbcells = manifold_boundary(cc2)

cc2bnd = lefschetz_subcomplex(cc2, mbcells)

This time, the homology of the resulting cubical complex is given by the Betti numbers

julia> homology(cc2bnd)

3-element Vector{Int64}:

1

0

1

This complex is connected and has no holes, but it does have one cavity. As shown, these observations translate

into the Betti numbers β0(X) = 1 and β1(X) = 0, as well as β2(X) = 1.

Beyond these simple illustrative examples, homology can be a useful tool in a variety of applied settings.

For example, it can be used to quantify the evolution of material microstructures during phase separation

processes, see for example [GMW05].

4.2 Relative Homology

For the definition of the Conley index of an isolated invariant set another notion of homology is essential,

namely relative homology. For this, we assume thatX is a Lefschetz complex, and Y ⊂ X is a closed subset.

In other words, for every cell in Y , all of its faces are contained in Y as well. Then relative homology defines

CHAPTER 4. HOMOLOGY 41

a sequence of groups Hk(X,Y) for k ∈ Z which basically measures the topological properties of X if the

subset Y is contracted to a point and then forgotten.

This admittedly very vague definition can be made precise in a number of ways. Two of these can easily be

described:

• We have already seen that any locally closed subset of a Lefschetz complex is again a Lefschetz complex.

Since the subset Y ⊂ X is closed, its complement X \ Y is open, and hence locally closed as well.

Thus, the complement X \ Y is again a Lefschetz complex. It has been shown in [MB09, Theorem 3.5]

that then

Hk(X,Y) ∼= Hk(X \ Y) for all k ∈ Z.

In other words, the relative homology of the pair (X,Y) is just the regular homology of the Lefschetz
complex given by the set X \ Y , with the incidence coefficient map inherited from X .

• On a more topological level, one can also think of the relative homology of (X,Y) in the following way.
In the complexX , identify all cells in Y to a single point, in the sense of the quotient spaceX/Y defined

in a standard topology course. Then one can show that

Hk(X,Y) ∼= H̃k(X/Y) for all k ∈ Z,

where H̃k(Z) denotes the reduced homology of a space Z. While the details of this latter notion of
homology can be found in [Mun84, Section 7], for our purposes it suffices to note that the Betti numbers

in reduced homology can be obtained from the ones in regular homology by decreasing the 0-th Betti
number by 1, and keeping all other Betti numbers unchanged.

The precise mathematical definition of relative homology can be found in [Mun84, Section 9], and it is briefly

introduced in the following. Since the k-th chain group of a Lefschetz complex consists of all formal linear
combinations of k-dimensional cells, one can consider the vector space Ck(Y) as a subspace of Ck(X).
Thus, it makes sense to form the quotient groups

Ck(X,Y) = Ck(X)/Ck(Y)

as in linear algebra. Moreover, if one considers a class [x] ∈ Ck(X,Y) represented by some x ∈ Ck(X),
then the definition

∂[x] = [∂x] ∈ Ck−1(X,Y) for [x] ∈ Ck(X,Y)

gives a well-defined linear map ∂ : Ck(X,Y) → Ck−1(X,Y) which satisfies ∂ ◦ ∂ = 0. In other words,
the collection (Ck(X,Y))k∈Z equipped with this boundary operator ∂ is a chain complex, and its associated
homology groupsHk(X,Y) are called the relative homology groups of the pair (X,Y). Notice that by forming
the quotient spacesCk(X)/Ck(Y), the chains in the subspace are all identified and set to zero, as mentioned
earlier.

In ConleyDynamics.jl, relative homology can be computed using relative_homology. There are two possible

ways to invoke this function:

https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 4. HOMOLOGY 42

Figure 4.4: Sample simplicial complex

• The method relative_homology(lc::LefschetzComplex, subc::Cells) expects a Lefschetz com-

plex lc which representsX , together with a list of cells subc. The closure of this cell list determines the
closed subcomplex Y .

• The method relative_homology(lc::LefschetzComplex, subc::Cells, subc0::Cells) expects an

ambient Lefschetz complex specified by the argument lc. The Lefschetz complexX is then the closure

of the cell list subc, while the subcomplex Y is given by the closure of the cell list subc0. These closures

are automatically computed by the function.

Both versions of relative_homology return the relative homology as a vector betti of Betti numbers, where

betti[k] is the Betti number in dimension k-1. Notice also that the necessary cell list arguments have to be

variables of the type Cells = Union{Vector{Int},Vector{String}}, i.e., they can be given in either label

or index form.

In order to briefly illustrate the different usages of the command relative_homology, we consider again the

simplicial complex shown in the figure, which can be generated using the commands

labels2 = ["A","B","C","D","E","F","G","H"]

simplices2 = [["A","B"],["A","F"],["B","F"],["B","C","G"],["D","E","H"],["C","D"],["G","H"]]

sc2 = create_simplicial_complex(labels2,simplices2)

If we identify the verticesA andE, then an additional loop is created along the bottom of the original simplicial
complex. This leads to the following relative homology:

julia> relative_homology(sc2, ["A","E"])

3-element Vector{Int64}:

0

3

0

Note that the 0-th Betti number becomes zero, since these identified vertices are considered as zero in the
chain groupC0(X,Y). On the other hand, if we consider the boundary of the triangleDEH as the subcomplex

Y , then one obtains:

julia> relative_homology(sc2, ["DE","DH","EH"])

3-element Vector{Int64}:

0

2

1

CHAPTER 4. HOMOLOGY 43

Again, the 0-th Betti number is reduced by one. But this time, the first Betti number does not change, as no
new holes are created. Nevertheless, collapsing the boundary of the triangle to a point does create a cavity,

and therefore the 2-nd Betti number is now one. One can also just consider the closure of the triangle BCG
as a Lefschetz complex X , and use its boundary as subcomplex Y . In this case we get:

julia> relative_homology(sc2, ["BCG"], ["BC","BG","CG"])

3-element Vector{Int64}:

0

0

1

This is the reduced homology of a two-dimensional sphere, which is the topological space obtained from the

quotient space X/Y . As our final example, consider the closed edge AB as Lefschetz complex X , and the
vertex B as subcomplex Y , then the relative homology of the pair (X,Y) is given by

julia> relative_homology(sc2, ["AB"], ["B"])

3-element Vector{Int64}:

0

0

0

In this case, all Betti numbers are zero. This can also be seen by recalling that this relative homology is

isomorphic to the relative homology of the two-element Lefschetz complex which consists only of the edge

AB and the vertex A:

julia> homology(lefschetz_subcomplex(sc2, ["A","AB"]))

2-element Vector{Int64}:

0

0

Note that one obtains a Betti number vector of length two, since this subcomplex has dimension one.

4.3 Persistent Homology

Even though the notion of persistence is not strictly necessary for the study of combinatorial topological dynam-

ics, the package ConleyDynamics.jl provides rudimentary support for the computation of persistence intervals

for filtrations of Lefschetz complexes. A detailed introduction to persistence can be found in the book [EH10],

and we briefly provide an intuitive definition and some examples below.

Persistent homology is concerned with the creation and destruction of topological features in a sequence of

nested Lefschetz complexes. More precisely, consider the sequence of Lefschetz complexes

X(1) ⊂ X(2) ⊂ . . . ⊂ X(n),

where we assume that X(k) is closed in X(n) for all 1 ≤ k < n. This is called a filtration of Lefschetz
complexes. As we have seen above, every one of the complexes X(k) has associated homology groups, and

the notion of persistence is concerned with how these groups change as k is increased from 1 to n. More
precisely, this is based on the following intuition:

https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 4. HOMOLOGY 44

Figure 4.5: The 1-st complex in the filtration

Figure 4.6: The 2-nd complex in the filtration

• For k = 1, the Betti numbers of the Lefschetz complex X(1) describe how many nontrivial holes the

complex has in each dimension. Each of these holes is represented by a cycle which generates the

associated homology class. One then says that each of these homology classes is born at k = 1.

• As one passes from the complexX(k) to the complexX(k+1), for k = 1, . . . , n−1, these Betti numbers
can change in a number of ways:

– A new homology class is created inX(k+1), which leads to an increase in the corresponding Betti

number. As before, this means that a new homology class is born at level k + 1.

– A homology class that was present in X(k) is no longer present in X(k+1). On the one hand, this

could be the result of the merging of two separate topological features, such as for example two

separate connected components of the complex X(k) which become one connected component

in X(k+1). On the other hand, the corresponding hole in the complex could have been filled in

through the introduction of cells in the set difference X(k+1) \X(k). In either case, we say that

the homology class died at level k + 1.

• The persistent homology associated with this filtration then consists of a collection of persistence inter-

vals for each dimension. All of these intervals are of the form [b, d), where b denotes the birth time and
d the death time of a topological feature. Note that some homology classes might still be present in
the homology of the final Lefschetz complex X(n), and in this case one obtains an interval of the form
[b,∞), i.e., the feature never dies.

With the above intuitive description one usually can work out the collection of persistence intervals for small

and simple examples. There is, however, one final ambiguity that has to be resolved. Suppose that two

topological features are born at times b1 and b2, and they merge to a single feature at time d. Which of these
survives into the next complex, and which dies? In this situation, the elder rule applies, which says that the

older feature persists. Thus, if b1 ≥ b2, then one obtains the persistence interval [b1, d), while the death time
e in the interval [b2, e) will be determined by a later level, i.e., we have e > d.

In order to illustrate this informal definition, we consider the filtration given by the four simplicial complexes

shown in the figures. All of these are subcomplexes of, and the last one is equal to, one of our earlier examples.

In this simple example, the persistence intervals in each dimension can be determined easily:

CHAPTER 4. HOMOLOGY 45

Figure 4.7: The 3-rd complex in the filtration

Figure 4.8: The 4-th complex in the filtration

• Dimension 0: The first complex has one connected component. A second component, namely the

vertex H, is added in X(2). Both of these components merge in X(3), and no additional components

are created. In view of the elder rule, this gives the two persistence intervals [1,∞) and [2, 3).

• Dimension 1: The first hole is created inX(2), given by the cycle AB + AF + BF. Moreover, inX(3)

the hole determined by the chainDE+DH+EH is added to the mix. Finally, inX(4) the latter hole is

removed through filling in the triangleDEH, while the hole bounded by the cycleCD+DH+CG+GH
is created. This gives the unbounded persistence intervals [2,∞) and [4,∞), as well as the bounded
one [3, 4).

• Dimension 2: None of the complexes form any cavities, and therefore there are no persistence intervals

in dimension two.

In ConleyDynamics.jl, there are two functions that provide basic persistence functionality:

• The function persistent_homology computes the persistence intervals, and it is usually invoked using

the command pinf, ppairs = persistent_homology(lc, filtration). It expects two arguments:

The first is an underlying Lefschetz complex lc of type LefschetzComplex, which has to be the complex

X(n) in the above notation. The second argument filtration is of type Vector{Int} and has to have

length lc.ncells. For each cell index, it contains the integer level k of the the first complex X(k) in

which the cell appears. The function returns two vectors, pinf and ppairs, each of which have length

1 + lc.dim, and which contain the following information:

– pinf[k] contains a vector of birth times for all unbounded persistence intervals in dimension k−1.
It is an empty vector if no such intervals exist.

– ppairs[k] contains a vector of pairs (b,d) for each of the bounded persistence interval [b, d) in
dimension k − 1. Again, this vector is empty if no such intervals exist.

Note that the integer vector filtration has to contain every integer between 1 and n at least once,
and only these integers. An error is raised if this is not the case, or if the resulting subcomplexes X(k)

are not closed.

https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 4. HOMOLOGY 46

• The function lefschetz_filtration is meant to simplify the construction of the argument filtration,

especially in the situation thatX(n) is a proper subcomplex of some ambient Lefschetz complexX . The
function is invoked using the form lcsub, filtration = lefschetz_filtration(lc, partialfil).

The argument lc contains the Lefschetz complexX . The argument partialfil has the type Vector{Int}
and is of length lc.ncells. For each cell index j it contains an integer partialfil[j] between 0 and n.
If the cell appears first in complexX(k), then partialfil[j] = k. This time, however, not all cells have

to be specified, since the function automatically computes the complex closure at every level. Clearly,

this means that the final complex is the closure of all cells with positive partialfil-values, and this can

be a proper subcomplex of lc. The function therefore returns this subcomplex lcsub, together with a

filtration filtration which satisfies the requirements of the function persistent_homology.

We close this section with two examples illustrating these functions. As first example, we consider the filtration

given above, which consists of four simplicial complexes. In this case the persistence can be computed using

the commands:

labels = ["A","B","C","D","E","F","G","H"]

simplices = [["A","B"],["A","F"],["B","F"],["B","C","G"],["D","E","H"],["C","D"],["G","H"]]

sc = create_simplicial_complex(labels,simplices)

filtration = [1,1,1,1,1,2,1,2,

1,2,1,2,1,1,1,1,3,3,4,

1,4]

pinf, ppairs = persistent_homology(sc, filtration)

The first three lines establish the simplicial complex X(4), while the next command defines the filtration. For

easier reading, we used different lines for the cells of each dimension. Finally, the last command computes

the persistence intervals. The unbounded ones have the birth times

julia> pinf

3-element Vector{Vector{Int64}}:

[1]

[2, 4]

[]

while the bounded ones are given by

julia> ppairs

3-element Vector{Vector{Tuple{Int64, Int64}}}:

[(2, 3)]

[(3, 4)]

[]

This is in accordance with our earlier observations. Notice also that the Betti numbers of the final complex

X(4) in the filtration can easily be determined via

julia> length.(pinf)

3-element Vector{Int64}:

1

2

0

CHAPTER 4. HOMOLOGY 47

With the second example we illustrate the use of the function lefschetz_filtration. For this, suppose that

the ambient Lefschetz complex X is the final simplicial complex in the filtration of the previous example.

Within this complex, we consider the following new filtration:

• The complex X(1) is the closure of {CD,GH}.

• The complex X(2) is the closure of X(1) ∪ {BC,BG,DEH}.

• The complex X(3) is the closure of X(2) ∪ {BCG}.

The persistent intervals of this filtration can be determined using the following commands:

labels = ["A","B","C","D","E","F","G","H"]

simplices = [["A","B"],["A","F"],["B","F"],["B","C","G"],["D","E","H"],["C","D"],["G","H"]]

sc = create_simplicial_complex(labels,simplices)

tmpfil = fill(Int(0),sc.ncells)

tmpfil[sc.indices["CD"]] = 1

tmpfil[sc.indices["GH"]] = 1

tmpfil[sc.indices["BC"]] = 2

tmpfil[sc.indices["BG"]] = 2

tmpfil[sc.indices["DEH"]] = 2

tmpfil[sc.indices["BCG"]] = 3

scsub, filtration = lefschetz_filtration(sc, tmpfil)

psinf, pspairs = persistent_homology(scsub, filtration)

The unbounded persistence intervals have birth times

julia> psinf

3-element Vector{Vector{Int64}}:

[1]

[2]

[]

while the bounded persistence intervals are

julia> pspairs

3-element Vector{Vector{Tuple{Int64, Int64}}}:

[(1, 2)]

[]

[]

Their correctness can immediately be established.

As we mentioned earlier, more information on persistence can be found in [EH10], which also contains a

detailed discussion of the implemented persistence algorithm in the context of simplicial complexes. Further

examples of persistence computations for general Lefschetz complexes are given in [DW18].

4.4 References

See the full bibliography for a complete list of references cited throughout this documentation. This section

cites the following references:

CHAPTER 4. HOMOLOGY 48

[DW18] P. Dłotko and T. Wanner. Rigorous cubical approximation and persistent homology of continuous

functions. Computers & Mathematics with Applications 75, 1648–1666 (2018).

[EH10] H. Edelsbrunner and J. L. Harer. Computational Topology (American Mathematical Society,

Providence, 2010).

[GMW05] M. Gameiro, K. Mischaikow and T. Wanner. Evolution of pattern complexity in the Cahn-Hilliard

theory of phase separation. Acta Materialia 53, 693–704 (2005).

[KMM04] T. Kaczynski, K. Mischaikow and M. Mrozek. Computational Homology. Vol. 157 of Applied

Mathematical Sciences (Springer-Verlag, New York, 2004).

[Lef42] S. Lefschetz. Algebraic Topology. Vol. 27 of American Mathematical Society Colloquium Publications

(American Mathematical Society, New York, 1942).

[MB09] M. Mrozek and B. Batko. Coreduction homology algorithm. Discrete & Computational Geometry 41,

96–118 (2009).

[Mun84] J. R. Munkres. Elements of Algebraic Topology (Addison-Wesley, Menlo Park, 1984).

[GUD24] GUDHI Project. GUDHI User and Reference Manual. 3.10.1 Edition (GUDHI Editorial Board, 2024).

https://doi.org/10.1016/j.camwa.2017.11.027
https://doi.org/10.1016/j.actamat.2004.10.022
https://doi.org/10.48550/arXiv.2103.04269
https://gudhi.inria.fr/doc/3.10.1/

Chapter 5

Conley Theory

The main motivation for ConleyDynamics.jl is the development of an accessible tool for studying the global

dynamics of multivector fields on Lefschetz complexes. Having already discussed the latter, we now turn

our attention to multivector fields and their global dynamics. This involves a detailed discussion of multivector

fields, isolated invariant sets, their Conley index, as well as Morse decompositions and connectionmatrices. We

also describe how a variety of isolated invariant sets can be constructed using Morse decomposition intervals,

and apply these tools to the analysis of simple planar and three-dimensional ordinary differential equations.

5.1 Multivector Fields

Suppose that X is a Lefschetz complex as described in Lefschetz Complexes, see in particular the definition

in Basic Lefschetz Terminology. Assume further that the Lefschetz complex is defined over a field F , which
is either the rational numbers Q or a finite field of prime order. Then a multivector field on X is defined as

follows.

Definition: Multivector field

A multivector field V on a Lefschetz complex X is a partition of X into locally closed sets.

Recall from our detailed discussion in Basic Lefschetz Terminology that a set V ⊂ X is called locally closed if

its mouth moV = clV \ V is closed, where closedness in turn is defined via the face relation in a Lefschetz

complex. This implies that for each multivector V ∈ V the relative homologyH∗(clV,moV) is well-defined,
and it allows for the following classification of multivectors:

• A critical multivector is a multivector for which H∗(clV,moV) 6= 0.

• A regular multivector is a multivector for which H∗(clV,moV) = 0.

Since a multivector is locally closed, it is a Lefschetz subcomplex ofX as well, and we have already seen that

its Lefschetz homology satisfies H∗(V) ∼= H∗(clV,moV). For more details, see Relative Homology.

The above classification of multivectors is motivated by the case of classical Forman vector fields. These are a

special case of multivector fields, in that they also form a partition of the underlying Lefschetz complex. This

time, however, there are only two types of multivectors:

• A critical cell is a multivector consisting of exactly one cell of the Lefschetz complex. One can easily see

that in this case the k-th homology group is isomorphic to F , as long as the cell has dimension k. All
other homology groups vanish. Thus, every critical cell is a critical multivector.

49

https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 5. CONLEY THEORY 50

• A Forman arrow is a multivector consisting of two cells σ− and σ+, where σ− is a facet of σ+. In other

words, one has to have κ(σ+, σ−) 6= 0, which also implies that 1 + dimσ− = dimσ+. One can show

that all homology groups of a Forman arrow are zero, and therefore it is a regular multivector.

In ConleyDynamics.jl, multivector fields can be created in two different ways. The direct method is to specify all

multivectors of length larger than one in an array of type Vector{Vector{Int}} or Vector{Vector{String}},

depending on whether the involved cells are referenced via their indices or labels. Recall that it is easy to

convert between these two forms using the command convert_cellsubsets. The subsets specified by the

vector entries have to be disjoint. They do not, however, have to exhaust the underlying Lefschetz complex

X . Any cells that are not part of a specified multivector will be considered as one-element critical cells. This
reduces the size of the representation in many situations.

For large Lefschetz complexes, the above method becomes quickly impractical. In such a case it is easier to

determine a multivector field indirectly, through a mechanism involving dynamical transitions. This is based

on the following result.

Theorem: Multivector fields via dynamical transitions

Let X be a Lefschetz complex and let D denote an arbitrary collection of subsets of X . Then there
exists a uniquely determined minimal multivector field V which satisfies the following:

• For every D ∈ D there exists a V ∈ V such that D ⊂ V .

Note that the sets in D do not have to be disjoint, and their union does not have to exhaust X . One
can think of the sets in D as all allowable dynamical transitions.

The above result shows that as long as one has an idea about the transitions that a system has to be allowed

to do, one can always find a smallest multivector field which realizes them. Needless to say, if too many

transitions are specified, then it is possible that the result leads to the trivial multivector field V = {X}. In
most cases, however, the resulting multivector field is more useful. See also the examples later in this section

of the manual.

The package ConleyDynamics.jl provides a number of functions for creating andmanipulatingmultivector fields

on Lefschetz complexes:

• The function create_mvf_hull implements the above theorem on dynamical transitions. It expects

two input arguments: A Lefschetz complex lc, as well as a vector mvfbase that defines the dynamical

transitions in D. The latter has to have type Vector{Vector{Int}} or Vector{Vector{String}}.

• The function mvf_information displays basic information about a given multivector field. It expects

both a Lefschetz complex and a multivector field as arguments, and returns a Dict{String,Any} with

the information. The keys of this dictionary are as follows:

– "N mv": Number of multivectors

– "N critical": Number of critcal multivectors

– "N regular": Number of regular multivectors

– "Lengths critical": Length distribution of critical multivectors

– "Lengths regular": Length distribution of regular multivectors

In the last two cases, the dictionary entries are vectors of pairs (length,frequency), where each pair

indicates that there are frequency multivectors of length length.

https://almost6heads.github.io/ConleyDynamics.jl
https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 5. CONLEY THEORY 51

• The function extract_multivectors expects as input arguments a Lefschetz complex and a multivector

field, as well as a list of cells specified as a Vector{Int} or a Vector{String}. It returns a list of all

multivectors that contain the specified cells.

• The function create_planar_mvf creates amultivector field which approximates the dynamics of a given

planar vector field. It expects as arguments a two-dimensional Lefschetz complex, a vector of planar

coordinates for the vertices of the complex, as well as a function which implements the vector field. It

returns a multivector field based on the dynamical transitions induced by the vector field directions on

the vertices and edges of the Lefschetz complex. While the complex does not have to be a triangula-

tion, it is expected that the one-dimensional cells are straight line segments between the two boundary

vertices.

• The utility function planar_nontransverse_edges expects the same arguments as the previous one,

and returns a list of nontransverse edges as Vector{Int}, which contains the corresponding edge in-

dices. The optional parameter npts determines how many points along an edge are evaluated for the

transversality check.

• The function create_spatial_mvf creates a multivector field which approximates the dynamics of a

given spatial vector field. While it expects the same arguments as its planar counterpart, the Lefschetz

complex has to be of one of the following two types:

– The Lefschetz complex is a tetrahedral mesh of a region in three dimensions, i.e., it is a simplicial

complex.

– The Lefschetz complex is a three-dimensional cubical complex, i.e., it is the closure of a collection

of three-dimensional cubes in space.

In the second case, the vertex coordinates can be slightly perturbed from the original position in the

cubical lattice, as long as the overall structure of the complex stays intact. In that case, the faces are

interpreted as Bezier surfaces with straight edges.

All of these functions will be illustrated in more detail in the examples which are presented later in this section.

See also the Tutorial for another planar vector field analysis.

5.2 Invariance and Conley Index

Amultivector field induces dynamics on the underlying Lefschetz complex through the iteration of amultivalued

map. This flow map is given by

ΠV(x) = clx ∪ [x]V for all x ∈ X

where [x]V denotes the unique multivector in V which contains x. The definition of the flow map shows that
the induced dynamics combines two types of behavior:

• From a cell x, it is always possible to flow towards the boundary of the cell, i.e., to any one of its faces.

• In addition, it is always possible to move freely within a multivector.

The multivalued map ΠV : X (X naturally leads to a solution concept for multivector fields. A path is

a sequence x0, x1, . . . , xn ∈ X such that xk ∈ ΠV(xk−1) for all indices k = 1, . . . , n. Paths of bi-infinite
length are called solutions. More precisely, a solution of the combinatorial dynamical system induced by the

CHAPTER 5. CONLEY THEORY 52

Figure 5.1: The logo multivector field

multivector field is then a map ρ : Z → X which satisfies ρ(k + 1) ∈ ΠV(ρ(k)) for all k ∈ Z. We say that
this solution passes through the cell x ∈ X if in addition one has ρ(0) = x. It is clear from the definition of

the flow map that every constant map is a solution, since we have the inclusion x ∈ ΠV(x). Thus, rather than
considering solutions in the above (classical) sense, we focus on a more restrictive notion.

Definition: Essential solution

Let ρ : Z → X be a solution for the multivector field V . Then ρ is an essential solution, if the following
holds:

• If for k ∈ Z the cell ρ(k) lies in a regular multivector V ∈ V , then there exist integers `1 < k <
`2 for which we have ρ(`i) 6∈ V for i = 1, 2.

In other words, an essential solution has to leave a regular multivector both in forward and in backward

time. It can, however, stay in a critical multivector for as long as it wants.

The notion of essential solution has its origin in the distinction between critical and regular multivectors. In

Forman's theory, which is based on classical Morse theory, critical cells correspond to stationary solutions or

equilibria of the underlying flow. Thus, it has to be possible to stay in a critical multivector for all times, whether

in forward or backward time, or even for all times. On the other hand, a Forman arrow indicates prescribed non-

negotiable motion, and therefore a regular multivector corresponds to motion which goes from the multivector

to its mouth.

The multivector field from the package logo, which is shown in the accompanying image, consists of three

critical cells, two Forman arrows, as well as one multivector which consists of four cells. Beyond the constant

essenetial solutions in each of the three critical cells, another essential solution is the periodic orbit

ρP given by . . . → A → AB → B → BCD → C → AC → A → . . .

Notice that this is just one of many realizations of this particular periodic motion, since an essential solution

can take many different paths through a multivector.

Using the concept of essential solutions we can now introduce the notion of invariance. Informally, we say that

a subset of a Lefschetz complex is invariant if through every cell in the set there exists an essential solution

which stays in the set. In other words, we have the choice of staying in the set, even though there might be

other solutions that do leave. More generally, for every subsetA ⊂ X one can ask whether there are elements

CHAPTER 5. CONLEY THEORY 53

x ∈ A for which there exists an essential solution which passes through x and stays in A for all times. This

leads to the definition of the invariant part of A as

InvV(A) = {x ∈ A : there exists an essential solution ρ : Z → A through x}

It is certainly possible that the invariant part of a set is empty. If, however, the invariant part of A is all of A,
i.e., if we have InvV(A) = A, then the set A is called invariant. In the context of our above logo example,

the image of the essential solution ρP is clearly an invariant set.

Invariant sets are the fundamental building blocks for the global dynamics of a dynamical system. Yet, in

general they are difficult to study. Conley realized in [Con78] that if one restricts the attention to a more

specialized notion of invariance, then topological methods can be used to formulate a coherent general theory.

For this, we need to introduce the notion of isolated invariant set:

Definition: Isolated invariant set

A closed set N ⊂ X isolates an invariant set S ⊂ N , if the following two conditions are satisfied:

• Every path in N with endpoints in S is a path in S.

• We have ΠV(S) ⊂ N .

An invariant set S is an isolated invariant set, if there exists a closed set N which isolates S.

It is clear that the whole Lefschetz complex X isolates its invariant part. Therefore, the set InvV(X) is an
isolated invariant set. Moreover, one can readily show that ifN is an isolating set for an isolated invariant set

S, then any closed set S ⊂ M ⊂ N also isolates S. Thus, the closure clS is the smallest isolating set for S.
With these observations in mind, one obtains the following result from [LKMW23]:

Theorem: Characterization of isolated invariant sets

An invariant set S ⊂ X is an isolated invariant set, if and only if the following two conditions hold:

• S is V-compatible, i.e., it is the union of multivectors.

• S is locally closed.

In this case, the isolated invariant set S is isolated by its closure clS.

Returning to our earlier logo example, notice that the cells visited by the periodic essential solution ρP do

not form an isolated invariant set, but rather just an invariant set. However, if we consider the larger set SP

which consists of all cells except for the cells ABC and D, then we do obtain an isolated invariant set which
contains the periodic orbit ρP .

With this characterization at hand, identifying isolated invariant sets becomes straightforward. In addition,

since isolated invariant sets are locally closed, we can now also define their Conley index:

CHAPTER 5. CONLEY THEORY 54

Definition: Conley index

Let S ⊂ X be an isolated invariant set the multivalued flow map ΠV . Then the Conley index of S is
the relative (or Lefschetz) homology

CH∗(S) = H∗(clS,moS) ∼= H∗(S)

In addition, the Poincare polynomial of S is defined as

pS(t) =

∞∑
k=0

βk(S)t
k , where βk(S) = dimCHk(S) .

The Poincare polynomial is a concise way to encode the homology information.

Since the Conley index is nothing more than the relative homology of the closure-mouth-pair associated with

a locally closed set, one could easily use the homology functions described in Homology for its computation.

However, we have included a wrapper function to keep the notation uniform. In addition, ConleyDynamics.jl

contains a function which provides basic information about an isolated invariant set. These two functions can

be described as follows:

• The function conley_index determines the Conley index of an isolated invariant set. It expects a Lef-

schetz complex as its first argument, while the second one has to be a list of cells which specifies the

isolated invariant set, and which is either of type Vector{Vector{Int}} or Vector{Vector{String}}.

An error is raised if the second argument does not specify a locally closed set.

• The function isoinvset_information expects a Lefschetz complex lc::LefschetzComplex, a multi-

vector field mvf::CellSubsets, as well as an isolated invariant set iis::Cells as its three arguments.

Itreturns a Dict{String,Any} with the information. The keys of this dictionary are as follows:

– "Conley index" contains the Conley index of the isolated invariant set.

– "N multivectors" contains the number of multivectors in the isolated invariant set.

5.3 Morse Decompositions

We now turn our attention to the global dynamics of a combinatorial dynamical system. This is accomplished

through the notion of Morse decomposition, and it requires some auxilliary definitions:

• Suppose we are given a solution ϕ : Z → X for the multivector field V . Then the long-term limiting

behavior of ϕ can be described using the ultimate backward and forward images

uim−ϕ =
⋂

t∈Z−

ϕ ((−∞, t]) and uim+ϕ =
⋂

t∈Z+

ϕ ([t,+∞)) .

Notice that since X is finite, there has to exist a k ∈ N such that

uim−ϕ = ϕ ((−∞,−k]) 6= ∅ and uim+ϕ = ϕ ([k,+∞)) 6= ∅.

https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 5. CONLEY THEORY 55

• The V-hull of a set A ⊂ X is the intersection of all V-compatible and locally closed sets containing A.
It is denoted by 〈A〉V , and is the smallest candidate for an isolated invariant set which contains A.

• The α- and ω-limit sets of ϕ are then defined as

α(ϕ) =
〈
uim−ϕ

〉
V and ω(ϕ) =

〈
uim+ϕ

〉
V .

While in general the V-hull of a set does not have to be invariant, the following result shows that for every
essential solution both of its limit sets are in fact isolated invariant sets.

Theorem: Limit sets are nontrivial

Let ϕ be an essential solution in X . Then both limit sets α(ϕ) and ω(ϕ) are nonempty isolated
invariant sets.

We briefly pause to illustrate these concepts in the context of the above logo example. For the periodic essential

solution ρP , both its ultimate backward and forward images are precisely the cells visited by the solution. The
V-hull of im ρP is the set SP which consists of all cells except the index 0 and 2 critical cells. It was already

mentioned earlier that this indeed defines an isolated invariant set.

The above notions allow us to decompose the global dynamics of a multivector field. Loosely speaking, this

is accomplished by separating the dynamics into a recurrent part given by an indexed collection of isolated

invariant sets, and the gradient dynamics between them. This can be abstracted through the concept of a

Morse decomposition.

Definition: Morse decomposition

Assume that X is an invariant set for the multivector field V and that (P,≤) is a finite poset. Then
an indexed collection M = {Mp : p ∈ P} is called a Morse decomposition of X if the following

conditions are satisfied:

• The indexed familyM is a family of mutually disjoint, isolated invariant subsets of X .

• For every essential solution ϕ in X either one has imϕ ⊂ Mr for an r ∈ P or there exist two
poset elements p, q ∈ P such that q > p and

α(ϕ) ⊂ Mq and ω(ϕ) ⊂ Mp.

The elements of M are called Morse sets. We would like to point out that some of the Morse

sets could be empty.

Given a combinatorial multivector field V on an arbitrary Lefschetz complex X , there always exists a finest
Morse decompositionM. It can be found by determining those strongly connected components of the digraph

associated with the multivalued flow map ΠV : X (X which contain essential solutions. The associated

Conley-Morse graph is the partial order induced onM by the existence of connections, and represented as a

directed graph labelled with the Conley indices of the isolated invariant sets inM in terms of their Poincare

polynomials.

In order to capture the dynamics between two subsets A,B ⊂ X one can define the connection set from A
to B as the cell collection

CHAPTER 5. CONLEY THEORY 56

Figure 5.2: Morse decomposition of the planar flow

C(A,B) = {x ∈ X : ∃ essential solution ϕ through x with α(ϕ) ⊂ A and ω(ϕ) ⊂ B} .

Then C(A,B) is an isolated invariant set. We would like to point out, however, that the connection set can be,
and in fact will be, empty in many cases.

While the Morse sets of a Morse decomposition are the fundamental building blocks for the global dynamics,

there usually are many additional isolated invariant sets for the multivector field V . Of particular interest are
Morse intervals. To define them, let I ⊂ P denote an interval in the index poset. Then

MI =
⋃
p∈I

Mp ∪
⋃

p,q∈I

C(Mq,Mp)

is always an isolated invariant set. Nevertheless, not every isolated invariant set is of this form. For example,

the figure contains the multivector field which was discussed in [BKMW20, Figure 3]. While the underlying

simplicial complex and the Forman vector field are depicted in the left panel, the associated Conley-Morse

graph is shown on the right. For this combinatorial dynamical system, there exists an isolated invariant set

which contains only the four Morse sets within the gray region under the graph. More details can be found in

A Planar Forman Vector Field.

Morse decompositions and intervals can be easily computed and manipulated in ConleyDynamics.jl using the

following commands:

• The function morse_sets expects a Lefschetz complex and a multivector field as arguments, and returns

theMorse sets of the finest Morse decomposition as a Vector{Vector{Int}} or Vector{Vector{String}},

matching the format used for the multivector field. If the optional argument poset=true is added, then

the function also returns a matrix which encodes the Hasse diagram of the poset P. Note that this is the
transitive reduction of the full poset, i.e., it only contains necessary relations.

• The function morse_interval computes the isolated invariant set for a Morse set interval. The three

input arguments are the underlying Lefschetz complex, a multivector field, and a collection of Morse

sets. The latter should be determined using the function morse_sets. The function returns the smallest

isolated invariant set which contains the Morse sets and their connections as a Vector{Int}. The result

can be converted to label form using convert_cells.

https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 5. CONLEY THEORY 57

• The function restrict_dynamics restricts a multivector field to a Lefschetz subcomplex. The function

expects three arguments: A Lefschetz complex lc, a multivector field mvf, and a subcomplex of the

Lefschetz complex which is given by the locally closed set represented by lcsub. It returns the associated

Lefschetz subcomplex lcreduced and the induced multivector field mvfreduced on the subcomplex.

The multivectors of the new multivector field are the intersections of the original multivectors and the

subcomplex.

• Finally, the function remove_exit_set removes the exit set for a multivector field on a Lefschetz sub-

complex. It is assumed that the Lefschetz complex lc is a topological manifold and that mvf contains

a multivector field that is created via either create_planar_mvf or create_spatial_mvf. The function

identifies cells on the boundary at which the flows exits the region covered by the Lefschetz complex.

If this exit set is closed, one has found an isolated invariant set and the function returns a Lefschetz

complex lcr restricted to it, as well as the restricted multivector field mvfr. If the exit set is not closed,

a warning is displayed and the function returns the restricted Lefschetz complex and multivector field

obtained by removing the closure of the exit set. In the latter case, unexpected results might be ob-

tained.

The first two of these functions rely heavily on the Julia package Graphs.jl.

5.4 Connection Matrices

While a Morse decomposition represents the basic structure of the global dynamics of a combinatorial dy-

namical system, it does not directly provide more detailed information about the dynamics between them –

except for the poset order on the Morse sets. But which of the associated connecting sets actually have to

be nonempty? The algebra behind this question is captured by the connection matrix. The precise notion of

connection matrix was introduced in [Fra89], see also [HMS21], as well as the paper [MW23] which treats con-

nection matrices specifically in the setting of multivector fields and provides a precise definition of connection

matrix equivalence, even across varying posets.

Since the precise definition of a connection matrix is beyond the scope of this manual, we only state what

it is as an object, what its main properties are, and how it can be computed in ConleyDynamics.jl. Assume

therefore that we are given a Morse decomposition M of an isolated invariant set S. Then the connection
matrix is a linear map

∆ :
⊕
q∈P

CH∗(Mq) →
⊕
p∈P

CH∗(Mp),

i.e., it is a linear map which is defined on the direct sum of all Conley indices of the Morse sets in the Morse

decomposition. One usually writes the connection matrix∆ as a matrix in the form∆ = (∆(p, q))p,q∈P, which
is indexed by the poset P, and where the entries∆(p, q) : CH∗(Mq) → CH∗(Mp) are linear maps between
homological Conley indices. If I denotes an interval in the poset P, then one further defines the restricted
connection matrix

∆(I) = (∆(p, q))p,q∈I :
⊕
p∈I

CH∗(Mp) →
⊕
p∈I

CH∗(Mp).

Any connection matrix ∆ has the following fundamental properties:

• The matrix ∆ is strictly upper triangular, i.e., if ∆(p, q) 6= 0 then p < q.

http://juliagraphs.org/Graphs.jl/stable/
https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 5. CONLEY THEORY 58

• The matrix ∆ is a boundary operator, i.e., we have ∆ ◦ ∆ = 0, and ∆ maps k-th level homology to
(k − 1)-st level homology for all k ∈ Z.

• For every interval I in P we have

H∗∆(I) = ker∆(I)/im∆(I) ∼= CH∗(MI).

In other words, the Conley index of a Morse interval can be determined via the homology of the associ-

ated connection matrix minor ∆(I).

• If {p, q} is an interval in P and ∆(p, q) 6= 0, then the connection set C(Mq,Mp) is not empty.

We would like to point out that these properties do not characterize connection matrices. In practice, a given

multivector field can have several different connection matrices. These in some sense encode different types

of dynamical behavior that can occur in the system. Nonuniqueness, however, cannot be observed if the un-

derlying system is a gradient combinatorial Forman vector field on a Lefschetz complex. These are multivector

fields in which every multivector is either a singleton, and therefore a critical cell, or a two-element Forman

arrow. In addition, a gradient combinatorial Forman vector field cannot have any nontrivial periodic solutions,

i.e., periodic solutions which are not constant and therefore critical cells. For such combinatorial vector fields,

the following result was shown in [MW23].

Theorem: Uniqueness of connection matrices

If V is a gradient combinatorial Forman vector field andM its finest Morse decomposition, then the

connection matrix is uniquely determined.

In ConleyDynamics.jl connection matrices can be computed over arbitrary finite fields or the rationals, using

the persistence-like algorithm introduced in [DLMS24]:

• The function connection_matrix computes a connection matrix for the multivector field mvf on the

Lefschetz complex lc over the field associated with the Lefschetz complex boundarymatrix. The function

returns an object of type ConleyMorseCM, which is further described below. If the optional argument

returnbasis=true is given, then the function also returns a dictionary which gives the basis for the

connection matrix columns in terms of the original cell labels.

The connection matrix is returned in an object with the composite data type ConleyMorseCM. Its docstring is

as follows:

ConleyDynamics.ConleyMorseCM – Type.

ConleyMorseCM{T}

Collect the connection matrix information in a struct.

The struct has the following fields:

• matrix::SparseMatrix{T}: Connection matrix

• columns::Vector{Int}: Corresponding columns in the boundary matrix

• poset::Vector{Int}: Poset indices for the connection matrix columns

https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 5. CONLEY THEORY 59

Figure 5.3: A planar simplicial complex flow

• labels::Vector{String}: Labels for the connection matrix columns

• morse::Vector{Vector{String}}: Vector of Morse sets in original complex

• conley::Vector{Vector{Int}}: Vector of Conley indices for the Morse sets

• complex::LefschetzComplex: The Conley complex as a Lefschetz complex

source

To illustrate these fields further, we briefly illustrate them for the example associated with the last figure, see

again A Planar Forman Vector Field. For reference, the underlying simplicial complex and Forman vector field

are shown in the next figure.

The underlying Lefschetz complex, multivector field, and connection matrix can be computed over the field

GF (2) as follows:

lc, mvf, coords = example_forman2d()

cm = connection_matrix(lc, mvf)

sparse_show(cm.matrix)

[0 0 0 0 1 0 1 0 0]

[0 0 0 0 0 1 0 0 0]

[0 0 0 0 1 1 1 0 0]

[0 0 0 0 0 0 0 0 1]

[0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0]

The field cm.poset indicates which Morse set each column belongs to, while the field cm.labels shows which

cell label the column corresponds to. For the example one obtains:

print(cm.poset)

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/conley/composite_types.jl#L82-L95

CHAPTER 5. CONLEY THEORY 60

[1, 2, 3, 3, 4, 5, 6, 7, 8]

print(cm.labels)

["D", "E", "F", "GJ", "BF", "EF", "HI", "ADE", "FGJ"]

Note that except for the third and fourth column, all columns belong to unique Morse sets whose Conley index

is a one-dimensional vector space. The third and fourth column correspond to the periodic orbit, whose Conley

index is a two-dimensional vector space. The Conley indices for all eight Morse sets can be seen in the field

cm.conley:

cm.conley

8-element Vector{Vector{Int64}}:

[1, 0, 0]

[1, 0, 0]

[1, 1, 0]

[0, 1, 0]

[0, 1, 0]

[0, 1, 0]

[0, 0, 1]

[0, 0, 1]

The full associated Morse sets are list in cm.morse:

cm.morse

8-element Vector{Vector{String}}:

["D"]

["E"]

["F", "G", "I", "J", "FG", "FI", "GJ", "IJ"]

["BF"]

["EF"]

["HI"]

["ADE"]

["FGJ"]

As the final struct field, the entry cm.complex returns the connection matrix as a Lefschetz complex in its own

right. This is useful for determining the Conley indices of Morse intervals. In our example, the cells of the new

Lefschetz complex are given by

CHAPTER 5. CONLEY THEORY 61

cm.complex.labels

9-element Vector{String}:

"D"

"E"

"F"

"GJ"

"BF"

"EF"

"HI"

"ADE"

"FGJ"

The Morse interval consisting of the two index 2 critical cells ADE and FGJ should have as Conley index
the sum of the two individual indices, and the following computation demonstrates this:

conley_index(cm.complex, ["ADE", "FGJ"])

3-element Vector{Int64}:

0

0

2

In contrast, since there is exactly one connecting orbit betweenADE andBF, the Conley index of this interval
should be trivial:

conley_index(cm.complex, ["ADE", "BF"])

3-element Vector{Int64}:

0

0

0

Finally, there are exactly two connecting orbits between the Morse sets ADE and EF, and therefore the
Conley index of this last interval is again the sum of the separate indices:

conley_index(cm.complex, ["ADE", "EF"])

3-element Vector{Int64}:

0

1

1

CHAPTER 5. CONLEY THEORY 62

5.5 Extracting Subsystems

We briefly return to one of the examples in the tutorial. More precisely, we consider the planar ordinary

differential equation given by

ẋ1 = x1

(
1− x2

1 − 3x2
2

)
ẋ2 = x2

(
1− 3x2

1 − x2
2

)
The dynamics of this system is characterized by the existence of a global attractor in the shape of a closed

disk. Inside the attractor, there are nine different Morse sets:

• The origin is an equilibrium of index 2, i.e., it is an unstable stationary state with a two-dimensional

unstable manifold.

• The four points (±1/2,±1/2) are unstable equilibria of index 1, i.e., with a one-dimensional unstable
manifold.

• Finally, the four points (±1, 0) and (0,±1) are asymptotically stable stationary states.

We saw in the tutorial that the Morse decomposition of this system can easily be found using ConleyDynamics.jl,

as well as the associated connection matrix. Yet, in certain situations one might only be interested in part of the

dynamics on the attractor. Moreover, while the Morse sets describe the recurrent part of the dynamics, they

do not provide information on the geometry of the connecting sets between the Morse sets. In the following,

we illustrate how this can be analyzed further.

The right-hand side of the above vector field can be implemented using the Julia function

function planarvf(x::Vector{Float64})

#

Sample planar vector field with nontrivial Morse decomposition

#

x1, x2 = x

y1 = x1 * (1.0 - x1*x1 - 3.0*x2*x2)

y2 = x2 * (1.0 - 3.0*x1*x1 - x2*x2)

return [y1, y2]

end

planarvf (generic function with 1 method)

To analyze the resulting global dynamical behavior, we first create a simplicial mesh covering the square

[−6/5, 6/5]2 using the commands

lc, coords = create_simplicial_delaunay(300, 300, 5, 50);

coordsN = convert_planar_coordinates(coords,[-1.2,-1.2], [1.2,1.2]);

lc.ncells

https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 5. CONLEY THEORY 63

14395

The integer in the output gives the number of cells in the created Lefschetz complex X . Note that we are
using a Delaunay triangulation over an initial box of size 300× 300, where the target triangle size is about 5.
This box is then rescaled to cover the above square. We can then create a multivector field on the simplicial

complex lc and find its Morse decomposition using the commands

mvf = create_planar_mvf(lc, coordsN, planarvf);

morsedecomp = morse_sets(lc, mvf);

length(morsedecomp)

9

As expected, ConleyDynamics.jl finds exactly nine Morse sets. Their Conley indices can be computed and

stored in a Vector{Vector{Int}} using the command

conleyindices = [conley_index(lc, mset) for mset in morsedecomp]

9-element Vector{Vector{Int64}}:

[1, 0, 0]

[1, 0, 0]

[0, 1, 0]

[1, 0, 0]

[0, 1, 0]

[1, 0, 0]

[0, 1, 0]

[0, 1, 0]

[0, 0, 1]

These Conley indices correspond to the dynamical behavior near the equilibrium solutions described above.

Suppose now that rather than finding the connection matrix for the complete Morse decomposition, we would

only like to consider a part of it. This can be done as long as we restrict our attention to an interval in the

Morse decomposition. Such an interval I can be created from a selection S of the Morse sets in the following
way:

• In addition to the Morse sets in S, the interval I contains all Morse sets that lie between two Morse sets
in S with respect to the poset order underlying the Morse decomposition. Recall that this poset order

can be computed via morse_sets by activating the extra return object hasse, which describes the Hasse

diagram of the poset.

With every interval I of the Morse decomposition one can assign a smallest isolated invariant set XI ⊂ X
which describes the complete dynamics within and between the Morse sets in I. In fact, in can be characterized
as follows:

https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 5. CONLEY THEORY 64

• The set XI consists of all cells in the underlying Lefschetz complex X through which one can find a

solution which originates in one Morse set of I and ends in another Morse set of I, where the two
involved Morse sets can be the same. In other words, one needs to combine the interval Morse sets with

all connecting orbits between them.

The two above steps can be performed in ConleyDynamics.jl using the function morse_interval.

In our example, we consider two intervals. The first interval consists of the five Morse sets corresponding to all

unstable equilibrium solutions, while the second one considers the four index 1 and the four stable stationary

states. The associated isolated invariant sets for these two intervals can be computed as follows:

subset1 = findall(x -> x[2]+x[3]>0, conleyindices);

subset2 = findall(x -> x[1]+x[2]>0, conleyindices);

lcsub1 = morse_interval(lc, mvf, morsedecomp[subset1]);

lcsub2 = morse_interval(lc, mvf, morsedecomp[subset2]);

[length(subset1), length(subset2), length(lcsub1), length(lcsub2)]

4-element Vector{Int64}:

5

8

1201

2256

The output shows that we have in fact extracted five and eight Morse sets, respectively. It also shows that the

Lefschetz complexes corresponding to these two isolated invariant sets are much smaller than X .

So far, we have just determined the collections of cells that correspond to the two isolated invariant sets for

these intervals. We can now restrict the combinatorial dynamics to these subsets. Note that since they are

both isolated invariant sets, they are locally closed in X , and therefore the restrictions provide us with two
new Lefschetz complexes lcr1 and lcr2, along with induced multivector fields mvfr1 and mvfr2, respectively.

In ConleyDynamics.jl, this is achieved using the commands

lcr1, mvfr1 = restrict_dynamics(lc, mvf, lcsub1);

lcr2, mvfr2 = restrict_dynamics(lc, mvf, lcsub2);

[lcr1.ncells, lcr2.ncells]

2-element Vector{Int64}:

1201

2256

It is now easy to find the connection matrices for these two intervals. The first connection matrix is given by

cmr1 = connection_matrix(lcr1, mvfr1);

cmr1.conley

https://almost6heads.github.io/ConleyDynamics.jl
https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 5. CONLEY THEORY 65

5-element Vector{Vector{Int64}}:

[0, 1, 0]

[0, 1, 0]

[0, 1, 0]

[0, 1, 0]

[0, 0, 1]

full_from_sparse(cmr1.matrix)

5×5 Matrix{Int64}:

0 0 0 0 1

0 0 0 0 1

0 0 0 0 1

0 0 0 0 1

0 0 0 0 0

It clearly shows that the unstable index 2 Morse set has connecting orbits to every one of the four index 1

equilibria. Similarly, the second connection matrix can be determined as

cmr2 = connection_matrix(lcr2, mvfr2);

cmr2.conley

8-element Vector{Vector{Int64}}:

[1, 0, 0]

[1, 0, 0]

[1, 0, 0]

[1, 0, 0]

[0, 1, 0]

[0, 1, 0]

[0, 1, 0]

[0, 1, 0]

full_from_sparse(cmr2.matrix)

8×8 Matrix{Int64}:

0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 1

0 0 0 0 1 1 0 0

0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

CHAPTER 5. CONLEY THEORY 66

Figure 5.4: Interval support for the first interval

In this case, every index 1 equilibrium is connected two its two neighboring stable stationary states via hete-

roclinics that are detected by the connection matrix.

The Lefschetz complexes associated with the two Morse decomposition intervals can also be visualized in

ConleyDynamics.jl. For this, recall that the function plot_planar_simplicial_morse can plot an underly-

ing simplicial complex together with any collection of cell subsets. For our purposes, we use the following

commands:

show1 = [[lcr1.labels]; cmr1.morse];

show2 = [[lcr2.labels]; cmr2.morse];

fname1 = "/Users/wanner/Desktop/invariantinterval2d1.png"

fname2 = "/Users/wanner/Desktop/invariantinterval2d2.png"

plot_planar_simplicial_morse(lc, coordsN, fname1, show1, vfac=1.1, hfac=2.0)

plot_planar_simplicial_morse(lc, coordsN, fname2, show2, vfac=1.1, hfac=2.0)

The variable show1 collects not only the Morse sets that are part of the first connection matrix cmr1, but also

the support of the Lefschetz complex lcr1. This support is accessed via [lcr1.labels], and we add it as a

first vector of cells in show1. Similarly, we determine the support of the second isolated invariant set, together

with the Morse sets of cmr2. The remaining four commands create two images.

The first image shows the five Morse sets surrounding the stationary states at the origin and at (±1/2,±1/2).
In addition, it highlights the support of the isolated invariant set associated with this Morse decomposition

interval. One can clearly see rough outer approximations for the four heteroclinics which start at the origin

and end at the index 1 equilibria. These approximations are necessarily coarse, since we are not working with

a very fine triangulation.

Finally, the second image depicts the eight Morse sets enclosing the index 1 and the stable stationary states.

It also shows the support of the Lefschetz complex lcr2 which is associated with this Morse decomposition

interval. In this case, it covers eight different heteroclinic orbits, which are in fact better approximated than

the four in the previous image.

https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 5. CONLEY THEORY 67

Figure 5.5: Interval support for the second interval

5.6 Analysis of a Planar System

Our next example illustrates how ConleyDynamics.jl can be used to analyze the global dynamics of a planar

ordinary differential equations. For this, consider the planar system

ẋ1 = x2 − x1

(
x2
1 + x2

2 − 4
) (

x2
1 + x2

2 − 1
)

ẋ2 = −x1 − x2

(
x2
1 + x2

2 − 4
) (

x2
1 + x2

2 − 1
)

This system has already been considered in [MSTW22]. The right-hand side of this vector field can be imple-

mented using the Julia function

function circlevf(x::Vector{Float64})

#

Sample vector field with nontrivial Morse decomposition

#

x1, x2 = x

c0 = x1*x1 + x2*x2

c1 = (c0 - 4.0) * (c0 - 1.0)

y1 = x2 - x1 * c1

y2 = -x1 - x2 * c1

return [y1, y2]

end

circlevf (generic function with 1 method)

https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 5. CONLEY THEORY 68

To analyze the global dynamics of this vector field, we first create a cubical complex covering the square

[−3, 3]2 using the commands

n = 51

lc, coords = create_cubical_rectangle(n,n,p=2);

coordsN = convert_planar_coordinates(coords,[-3.0,-3.0],[3.0,3.0]);

lc.ncells

10609

As the last result shows, this gives a Lefschetz complex with 10609 cells. Themultivector field can be generated

using

mvf = create_planar_mvf(lc, coordsN, circlevf);

length(mvf)

2449

This multivector field consists of 2437 multivectors. Finally, the connection matrix can be determined using

the command

cm = connection_matrix(lc, mvf);

cm.conley

3-element Vector{Vector{Int64}}:

[1, 1, 0]

[1, 0, 0]

[0, 1, 1]

Therefore, the above planar system has three isolated invariant sets. One has the Conley index of a stable

equilibrium, while the other two have that of a stable and an unstable periodic orbit. The columns of the

connection matrix correspond to these invariant sets as follows

cm.poset

5-element Vector{Int64}:

1

1

2

3

3

CHAPTER 5. CONLEY THEORY 69

Figure 5.6: Morse sets of the planar circles vector field

The connection matrix itself is given by

full_from_sparse(cm.matrix)

5×5 Matrix{Int64}:

0 0 0 1 0

0 0 0 0 1

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

This implies that there are connecting orbits from the unstable periodic orbit to both the stable equilibrium,

and the stable periodic orbit. To visualize these Morse sets, we employ the commands

fname = "cubicalcircles.pdf"

plot_planar_cubical_morse(lc, fname, cm.morse, pv=true)

In the above example we used the original fixed cubical grid, which is just a scaled version of the grid on the

integer lattice. It is also possible to work with a randomized grid, in which the coordinates of the vertices are

randomly perturbed. This can be achieved with the following commands:

nR = 75

lcR, coordsR = create_cubical_rectangle(nR,nR,p=2,randomize=0.33);

coordsRN = convert_planar_coordinates(coordsR,[-3.0,-3.0],[3.0,3.0]);

mvfR = create_planar_mvf(lcR, coordsRN, circlevf);

CHAPTER 5. CONLEY THEORY 70

Figure 5.7: Morse sets of the planar circles vector field via randomized cubes

cmR = connection_matrix(lcR, mvfR);

fnameR = "cubicalcirclesR.pdf"

plot_planar_cubical_morse(lcR, coordsRN, fnameR, cmR.morse, pv=true, vfac=1.1, hfac=2.0)

To constrast the above example with the use of a Delaunay triangulation, we reanalyze the vector field in the

following way:

lc2, coords2 = create_simplicial_delaunay(400, 400, 10, 30, p=2)

coords2N = convert_planar_coordinates(coords2,[-3.0,-3.0], [3.0,3.0])

mvf2 = create_planar_mvf(lc2, coords2N, circlevf)

cm2 = connection_matrix(lc2, mvf2)

fname2 = "cubicalcircles2.pdf"

plot_planar_simplicial_morse(lc2, coords2N, fname2, cm2.morse, pv=true)

In this case, the Morse sets can be visualized as in the figure.

Notice that we can also show the individual multivectors in more detail. For the above example, we can plot

all multivectors of the multivector field mvf2 which consist of at least 10 cells using the commands

mv_indices = findall(x -> (length(x)>9), mvf2)

large_mv = mvf2[mv_indices]

fname3 = "cubicalcircles3.pdf"

plot_planar_simplicial_morse(lc2, coords2N, fname3, large_mv, pv=true)

Note that in this example, there are only 20 large multivectors.

CHAPTER 5. CONLEY THEORY 71

Figure 5.8: Morse sets of the planar circles vector field via Delaunay

Figure 5.9: Large multivectors in the Delaunay multivector field

CHAPTER 5. CONLEY THEORY 72

5.7 Analysis of a Spatial System

It is also possible to analyze simple three-dimensional ordinary differential equations in ConleyDynamics.jl. To

provide one such example, consider the system

ẋ1 = (λ− 1)x1 − 3λ
2π

(
(x3

1 − x2
1x3 + x2

2x3 + 2x1

(
x2
2 + x2

3

))
ẋ2 = (λ− 4)x2 − 3λ

2π x2

(
2x2

1 + x2
2 + 2x1x3 + 2x2

3

)
ẋ3 = (λ− 9)x3 +

λ
2π

(
x1

(
x2
1 − 3x2

2

)
− 3x3

(
2x2

1 + 2x2
2 + x2

3

))
This system arises in the study of the so-called Allen-Cahn equation, which is the parabolic partial differential

equation given by

ut = ∆u+ λ
(
u− u3

)
in Ω = (0, π) with u = 0 on ∂Ω .

This partial differential equation can be interpreted as an infinite-dimensional system of ordinary differential

equations, see for example [SW24, Section 6.1]. For this, one has to expand the unknown function u(t, ·) as a
generalized Fourier series with respect to the basis functions

ϕk(x) =

√
2

π
sin(kπx) for k ∈ N .

If one truncates this series representation after three terms, and projects the right-hand side of the partial

differential equation onto the linear space spanned by the first three basis functions, then the three coefficients

of the approximating sum satisfy the above three-dimensional ordinary differential equation. Thus, this system

provides a model for the dynamics of the partial differential equation, at least for sufficiently small values of

the parameter λ. It can be implemented in Julia using the following commands:

function allencahn3d(x::Vector{Float64})

#

Allen-Cahn projection

#

lambda = 3.0 * pi

c = lambda / pi

x1, x2, x3 = x

y1 = (lambda-1)*x1 - 1.5*c * (x1*x1*x1-x1*x1*x3+x2*x2*x3+2*x1*(x2*x2+x3*x3))

y2 = (lambda-4)*x2 - 1.5*c * x2 * (2*x1*x1+x2*x2+2*x1*x3+2*x3*x3)

y3 = (lambda-9)*x3 + 0.5*c * (x1*(x1*x1-3*x2*x2)-3*x3*(2*x1*x1+2*x2*x2+x3*x3))

return [y1, y2, y3]

end

Notice that for our example we use the parameter value λ = 3π. In this particular case, one can show
numerically that the system has seven equilibrium solutions. These are approximately given as follows:

• Two equilibria ±(1.45165, 0, 0.24396) of index 0.

• Two equilibria ±(0, 1.09796, 0) of index 1.

• Two equilibria ±(0, 0, 0.307238) of index 2.

https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 5. CONLEY THEORY 73

• One equilibrium (0, 0, 0) of index 3.

In order to find the associated Morse decomposition, one can use the commands

N = 25

bmax = [1.8, 1.5, 1.0]

lc, coordsI = create_cubical_box(N,N,N);

coordsN = convert_spatial_coordinates(coordsI, -bmax, bmax);

mvf = create_spatial_mvf(lc, coordsN, allencahn3d);

These commands create a cubical box of size 25×25×25 which covers the region [−1.8, 1.8]× [−1.5, 1.5]×
[−1.0, 1.0]. In addition, we construct a multivector field mvf which encapsulates the possible dynamics of the
system. After these preparations, the Morse decomposition can be computed via

morsedecomp = morse_sets(lc, mvf);

morseinterval = morse_interval(lc, mvf, morsedecomp);

lci, mvfi = restrict_dynamics(lc, mvf, morseinterval);

cmi = connection_matrix(lci, mvfi);

While the first command finds the actual Morse decomposition, the second one restricts the Lefschetz complex

and the multivector field to the smallest isolated invariant set which contains all Morse sets and connecting

orbits between them. The last command finds the connection matrix.

To see whether the above commands did indeed find the correct dynamical behavior, we first inspect the

computed Conley indices of the Morse sets:

julia> cmi.conley

7-element Vector{Vector{Int64}}:

[1, 0, 0, 0]

[1, 0, 0, 0]

[0, 1, 0, 0]

[0, 1, 0, 0]

[0, 0, 1, 0]

[0, 0, 1, 0]

[0, 0, 0, 1]

Clearly, these are the correct indices based on our numerical information concerning the stationary states of

the system. The connection matrix is given by:

julia> full_from_sparse(cmi.matrix)

7×7 Matrix{Int64}:

0 0 1 1 0 0 0

0 0 1 1 0 0 0

0 0 0 0 1 1 0

0 0 0 0 1 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 0

Thus, there are a total of ten connecting orbits that are induced through algebraic topology. The index 3

equilibrium at the origin has connections to each of the index 2 solutions, which lie above and below the

CHAPTER 5. CONLEY THEORY 74

Figure 5.10: The dynamics of an Allen-Cahn model

origin in the direction of the x3-axis. Each of the latter two stationary states has connections to both index 1

equilibria. Finally, each of these is connected to both stable states.

The location of the computed Morse sets is illustrated in the accompanying figure, which uses x, y, and z
instead of the variable names x1, x2, and x3, respectively. Notice that while the stationary states of index 0,

2, and 3 are all well-localized, this cannot be said about the two equilibria of index 1. The computed enclosures

for the latter two are elongated cubical sets which are shown along the upper left and lower right of the figure.

This overestimation is a result of the use of a strict cubical grid, combined with the small discretization size N =

25. Nevertheless, the above simple code does reproduce the overall global dynamical behavior of the ordinary

differential equation correctly.

One can also compute over Morse intervals, rather than the complete Morse decomposition. The final two

images show two views of the Morse interval which corresponds to one of the index 1 equilibria, and the two

stable stationary states. These computations were performed with the finer resolution N = 51.

We would like to emphasize that there are many techniques in the literature that can be used to identify

isolated invariant sets and their Conley indices. Rather than giving a detailed list, we refer to [SW14b] and

the references therein. For example, in [SW14b] ideas from computational topology were used to rigorously

establish candidate sets in three dimensions as an isolating block. The associated Matlab code can be found

at [SW14a].

5.8 References

See the full bibliography for a complete list of references cited throughout this documentation. This section

cites the following references:

[BKMW20] B. Batko, T. Kaczynski, M. Mrozek and T. Wanner. Linking combinatorial and classical dynamics:

Conley index and Morse decompositions. Foundations of Computational Mathematics 20, 967–1012

(2020).

https://doi.org/10.1007/s10208-020-09444-1

CHAPTER 5. CONLEY THEORY 75

Figure 5.11: Allen-Cahn Morse interval, View 1

Figure 5.12: Allen-Cahn Morse interval, View 2

[Con78] C. Conley. Isolated Invariant Sets and the Morse Index (American Mathematical Society, Providence,

R.I., 1978).

[DLMS24] T. K. Dey, M. Lipiński, M. Mrozek and R. Slechta. Computing connection matrices via

persistence-like reductions. SIAM Journal on Applied Dynamical Systems 23, 81–97 (2024).

[Fra89] R. Franzosa. The connection matrix theory for Morse decompositions.

Transactions of the American Mathematical Society 311, 561–592 (1989).

[HMS21] S. Harker, K. Mischaikow and K. Spendlove. A computational framework for connection matrix

theory. Journal of Applied and Computational Topology 5, 459–529 (2021).

[LKMW23] M. Lipinski, J. Kubica, M. Mrozek and T. Wanner. Conley-Morse-Forman theory for generalized

combinatorial multivector fields on finite topological spaces.

Journal of Applied and Computational Topology 7, 139–184 (2023).

https://doi.org/10.1137/23M1562469
https://doi.org/10.1007/s41468-021-00073-3
https://doi.org/10.1007/s41468-022-00102-9

CHAPTER 5. CONLEY THEORY 76

[MSTW22] M. Mrozek, R. Srzednicki, J. Thorpe and T. Wanner. Combinatorial vs. classical dynamics:

Recurrence. Communications in Nonlinear Science and Numerical Simulation 108, Paper No. 106226,

30 pages (2022).

[MW23] M. Mrozek and T. Wanner. Connection matrices in combinatorial topological dynamics,

arXiv:2103.04269 (2023).

[SW24] E. Sander and T. Wanner. Theory and Numerics of Partial Differential Equations (SIAM, Philadelphia,

2024). In preparation, 1007 pages.

[SW14a] T. Stephens and T. Wanner. Isolating block validation in Matlab,

https://github.com/almost6heads/isoblockval (2014).

[SW14b] T. Stephens and T. Wanner. Rigorous validation of isolating blocks for flows and their Conley indices.

SIAM Journal on Applied Dynamical Systems 13, 1847–1878 (2014).

https://doi.org/10.1016/j.cnsns.2021.106226
https://doi.org/10.1016/j.cnsns.2021.106226
https://doi.org/10.48550/arXiv.2103.04269
https://doi.org/10.1137/140971075

Chapter 6

Examples

In order to illustrate the basic functionality of ConleyDynamics.jl, this section collects a number of examples.

Many of these are taken from the papers [BKMW20] and [MW23], and they consider both Forman vector fields

and general multivector fields on a variety of Lefschetz complexes. Each example has its own associated

function, so that users can quickly create examples on their own by taking the respective source files as

templates.

6.1 A One-Dimensional Forman Field

Our first example is taken from [BKMW20, Figure 1], and it is a Forman vector field on a one-dimensional

simplicial complex as shown in the figure.

The simplicial complex and Forman vector field can be created using the function example_forman1d:

ConleyDynamics.example_forman1d – Method.

lc, mvf, coords = example_forman1d()

Create the simplicial complex and multivector field for the example from Figure 1 in the FoCM 2020 paper

by Batko, Kaczynski, Mrozek, and Wanner.

The function returns the Lefschetz complex lc and the multivector field mvf. If desired for plotting, the

third return value coords gives a vector of coordinates for the vertices. The Lefschetz complex is defined

over the finite field GF(2).

Examples

Figure 6.1: A one-dimensional simplicial complex flow

77

https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 6. EXAMPLES 78

Figure 6.2: Morse decomposition of the one-dimensional example

julia> lc, mvf = example_forman1d();

julia> cm = connection_matrix(lc, mvf);

julia> sparse_show(cm.matrix)

[0 0 0 0 1]

[0 0 0 0 0]

[0 0 0 0 1]

[0 0 0 0 0]

[0 0 0 0 0]

julia> print(cm.labels)

["A", "AD", "F", "BF", "DE"]

source

The commands from the docstring show that the connection matrix has five rows and columns. The last three

of these correspond to the critical cells F, BF, and DE, while the first two correspond to the two generators
of the homological Conley index of the periodic orbit, given by A and AD.

The full Morse decomposition of this combinatorial dynamical system is depicted in the second figure, and all

four Morse set are indicated in the simplicial complex by different colors. They are also listed, together with

their Conley indices, in the following Julia output:

julia> cm.morse

4-element Vector{Vector{String}}:

["A", "C", "D", "AC", "AD", "CD"]

["F"]

["BF"]

["DE"]

julia> cm.conley

4-element Vector{Vector{Int64}}:

[1, 1]

[1, 0]

[0, 1]

[0, 1]

Notice that only two heteroclinic orbits are reflected in the connection matrix. These are the connections be-

tween the unstable cellDE and both the equilibrium F and the periodic orbit. In contrast, the two heteroclinics
between the index one cell BF and F cancel algebraically.

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/examples/example_forman1d.jl#L3-L32

CHAPTER 6. EXAMPLES 79

Figure 6.3: A planar simplicial complex flow

6.2 A Planar Forman Vector Field

Our second example was originally discussed in the context of [BKMW20, Figure 3], and it consists of a Forman

vector field on a topological disk, as shown in the associated figure.

The disk is represented as a simplicial complex with 10 vertices, 19 edges, and 10 triangles. The Forman vector

field has 7 critical cells, and 16 arrows. Both the simplicial complex and the Forman vector field can be defined

using the function example_forman2d:

ConleyDynamics.example_forman2d – Method.

lc, mvf, coords = example_forman2d()

Create the simplicial complex and multivector field for the example from Figure 3 in the FoCM 2020 paper

by Batko, Kaczynski, Mrozek, and Wanner.

The function returns the Lefschetz complex lc over the finite field GF(2) and the multivector field mvf. If

desired for plotting, the third return value coords gives a vector of coordinates for the vertices.

Examples

julia> lc, mvf = example_forman2d();

julia> cm = connection_matrix(lc, mvf);

julia> sparse_show(cm.matrix)

[0 0 0 0 1 0 1 0 0]

[0 0 0 0 0 1 0 0 0]

[0 0 0 0 1 1 1 0 0]

[0 0 0 0 0 0 0 0 1]

[0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0]

julia> print(cm.labels)

["D", "E", "F", "GJ", "BF", "EF", "HI", "ADE", "FGJ"]

CHAPTER 6. EXAMPLES 80

Figure 6.4: Morse decomposition of the planar flow

source

The Morse decomposition of this example is shown in the second figure. Its eight Morse sets and associated

Conley indices are given by

julia> cm.morse

8-element Vector{Vector{String}}:

["D"]

["E"]

["F", "G", "I", "J", "FG", "FI", "GJ", "IJ"]

["BF"]

["EF"]

["HI"]

["ADE"]

["FGJ"]

julia> cm.conley

8-element Vector{Vector{Int64}}:

[1, 0, 0]

[1, 0, 0]

[1, 1, 0]

[0, 1, 0]

[0, 1, 0]

[0, 1, 0]

[0, 0, 1]

[0, 0, 1]

We would like to point out that the collection of Morse sets does not in general encompass all possible isolated

invariant sets for the combinatorial dynamical system. Consider for example the set S shown in light blue in
the next figure.

Its mouth is depicted in dark blue, and it is clearly closed. In addition, the set S decomposes into arrows and
critical cells, and one can show that it is invariant. Thus, it is in fact an isolated invariant set for this Forman

vector field. Note also that this cell does not correspond to an interval in the Conley-Morse graph either, and

this is indicated via gray shading in the above image of the graph. The set S, together with its closure and its
mouth, can be generated using the following commands:

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/examples/example_forman2d.jl#L3-L35

CHAPTER 6. EXAMPLES 81

Figure 6.5: A nontrivial isolated invariant set

S = ["ADE","DEH","EFI","EHI",

"DE","EF","EH","EI","FG","FI","GJ","HI","IJ",

"F","G","I","J"]

clS, moS = lefschetz_clomo_pair(lc,S)

Then the Conley index of S is given by

julia> conley_index(lc,S)

3-element Vector{Int64}:

0

1

0

julia> relative_homology(lc,clS,moS)

3-element Vector{Int64}:

0

1

0

Notice that this is the same as the relative homology of the pair (clS,moS), as expected.

6.3 The Multivector Field from the Logo

This example is taken from [MW23, Figure 1], and it is visualized in the accompanying figure.

Clearly, this is the multivector field from the ConleyDynamics.jl logo. Since it was already discussed in detail

in the Tutorial, we only show how the underlying simplicial complex and the multivector field can be created

quickly using the function example_julia_logo:

ConleyDynamics.example_julia_logo – Method.

lc, mvf = example_julia_logo()

Create the simplicial complex and multivector field for the example from Figure 1 in the connection matrix

paper by Mrozek & Wanner.

https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 6. EXAMPLES 82

Figure 6.6: The logo multivector field

The function returns the Lefschetz complex lc over GF(2) and the multivector field mvf.

Examples

julia> lc, mvf = example_julia_logo();

julia> cm = connection_matrix(lc, mvf);

julia> sparse_show(cm.matrix)

[0 0 0]

[0 0 1]

[0 0 0]

julia> print(cm.labels)

["D", "AC", "ABC"]

source

The Morse sets and associated Conley indices can be accessed using the commands:

julia> cm.morse

3-element Vector{Vector{String}}:

["D"]

["A", "B", "C", "AB", "AC", "BC", "BD", "CD", "BCD"]

["ABC"]

julia> cm.conley

3-element Vector{Vector{Int64}}:

[1, 0, 0]

[0, 1, 0]

[0, 0, 1]

Notice that in this example, every simplex of the underlying simplicial complex is contained in one of the Morse

sets.

6.4 Critical Flow on a Simplex

The next example considers the arguably simplest situation of a Forman vector field on a simplicial complex.

The simplicial complex X is given by a single simplex of dimension n, together with all its faces, while the

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/examples/example_julia_logo.jl#L3-L27

CHAPTER 6. EXAMPLES 83

Forman vector field on X contains only singletons. In other words, every simplex in the complex is a critical

cell. Thus, this combinatorial dynamical system has one equilibrium of index n, and n + 1 stable equilibria.
In addition, there are 2n+1 − n− 3 additional stationary states whose indices lie strictly between 0 and n, as
well as a wealth of algebraically induced heteroclinic orbits. All of these can be found by using the connection

matrix for the problem, as outlined in the following description for the function example_critical_simplex.

ConleyDynamics.example_critical_simplex – Method.

lc, mvf = example_critical_simplex(dim)

Create a simplicial complex of dimension dim as well as a multivector field on it in which every cell is

critical.

The function returns the Lefschetz complex lc over GF(2) and the multivector field mvf.

Examples

julia> lc, mvf = example_critical_simplex(2);

julia> cm = connection_matrix(lc, mvf);

julia> sparse_show(cm.matrix)

[0 0 0 1 1 0 0]

[0 0 0 1 0 1 0]

[0 0 0 0 1 1 0]

[0 0 0 0 0 0 1]

[0 0 0 0 0 0 1]

[0 0 0 0 0 0 1]

[0 0 0 0 0 0 0]

julia> print(cm.labels)

["A", "B", "C", "AB", "AC", "BC", "ABC"]

source

6.5 Flow on a Cylinder and a Moebius Strip

The next example considers again Forman vector fields, but this time on a cylinder and on a Moebius strip. The

underlying simplicial complexes are given by a horizontal strip of eight triangles, whose left and right vertical

edges are identified. For the first complex lc1 these edges are identified without twist, while for the complex

lc2 they are twisted. See also the labels in the figure.

Both complexes consist of eight vertices, sixteen edges, and eight triangles. The two complexes and Forman

vector fields can be generated using the function example_critical_simplex, whose usage can be described

as follows.

ConleyDynamics.example_moebius – Function.

lc1, mvf1, lc2, mvf2 = example_moebius(p)

Create two simplicial complexes for a cylinder and Moebius strip, respectively, together with associated

multivector fields on them.

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/examples/example_critical_simplex.jl#L3-L30

CHAPTER 6. EXAMPLES 84

Figure 6.7: Combinatorial flow on cylinder and Moebius strip

The function returns the Lefschetz complexes lc1 and lc2, as well as the multivector fields mvf1 and mvf2.

Both complexes are over a field with characteristic p. Positive prime characteristic uses the finite field

GF(p), while zero characteristic gives the rationals.

The multivector field is the same, and it has one critical cell each in dimension 1 and 2 in the interior of

the strip. The boundary consists of two periodic orbits for lc1 and mvf1, and of one periodic orbit in the

Moebius case lc2 and mvf2. The latter case leads to different connection matrices for the fields GF(2) and

GF(7), for example.

Examples

julia> lc1, mvf1, lc2, mvf2 = example_moebius(0);

julia> lc2p2 = lefschetz_gfp_conversion(lc2,2);

julia> lc2p7 = lefschetz_gfp_conversion(lc2,7);

julia> cmp2 = connection_matrix(lc2p2, mvf2);

julia> cmp7 = connection_matrix(lc2p7, mvf2);

julia> sparse_show(cmp2.matrix)

[0 0 0 0]

[0 0 0 1]

[0 0 0 0]

[0 0 0 0]

julia> sparse_show(cmp7.matrix)

[0 0 0 0]

[0 0 0 1]

[0 0 0 2]

[0 0 0 0]

CHAPTER 6. EXAMPLES 85

source

Note that for the combinatorial flow on the Moebius strip lc2 the choice of field characteristic p leads to
potentially different connection matrices. While for characteristic p = 2 the connection matrix has only one
nontrivial entry, it has two for p = 7.

We only briefly include some sample computations for the latter case. One can create the complexes, Forman

vector fields, and associated connection matrices for p = 7 using the following commands:

lc1, mvf1, lc2, mvf2 = example_moebius(7)

cm1 = connection_matrix(lc1,mvf1)

cm2 = connection_matrix(lc2,mvf2)

For the first example, the combinatorial flow on the cylinder has four Morse sets. Two critical equilibria of

indices 1 and 2, as well as two periodic orbits. This can be shown as follows:

julia> cm1.morse

4-element Vector{Vector{String}}:

["A", "C", "E", "G", "AC", "AG", "CE", "EG"]

["B", "D", "F", "H", "BD", "BH", "DF", "FH"]

["AB"]

["EFG"]

julia> cm1.conley

4-element Vector{Vector{Int64}}:

[1, 1, 0]

[1, 1, 0]

[0, 1, 0]

[0, 0, 1]

julia> sparse_show(cm1.matrix)

[0 0 0 0 6 0]

[0 0 0 0 0 1]

[0 0 0 0 1 0]

[0 0 0 0 0 6]

[0 0 0 0 0 0]

[0 0 0 0 0 0]

julia> print(cm1.labels)

["A", "AG", "B", "BH", "AB", "EFG"]

In fact, the connection matrix implies the existence of connecting orbits from both the index 2 and the index

1 equilibrium to the two periodic orbits. The connections between the stationary states cannot be detected

algebraically.

For the second example, the combinatorial flow on the Moebius strip, one only obtains three Morse sets. This

time, there is only one periodic orbit which loops around both the top and bottom edges in the figure. This is

confirmed by the commands

julia> cm2.morse

3-element Vector{Vector{String}}:

["A", "B", "C", "D", "E", "F", "G", "H", "AC", "AH", "BD", "BG", "CE", "DF", "EG", "FH"]

["AB"]

["EFG"]

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/examples/example_moebius.jl#L3-L47

CHAPTER 6. EXAMPLES 86

Figure 6.8: An example with nonunique connection matrices

julia> cm2.conley

3-element Vector{Vector{Int64}}:

[1, 1, 0]

[0, 1, 0]

[0, 0, 1]

julia> sparse_show(cm2.matrix)

[0 0 0 0]

[0 0 0 1]

[0 0 0 2]

[0 0 0 0]

julia> print(cm2.labels)

["A", "BG", "AB", "EFG"]

In this case, the connection matrix is able to identify the connecting orbits between the index 2 stationary

state and both the periodic orbit and the index 1 equilibrium. The latter one is not recognized over the field

GF (2).

6.6 Nonunique Connection Matrices

Our next example is concerned with another Forman vector field, but this time on a larger simplicial complex,

as shown in the figure.

The simplicial complex is topologically a disk, and it consists of 9 vertices, 18 edges, and 10 triangles. The For-

man vector field has 1 critical vertex, 3 critical edges, and 3 critical triangles, as well as 15 Forman arrows. The

following example shows that for this combinatorial dynamical system, there are two fundamentally different

connection matrices.

ConleyDynamics.example_nonunique – Method.

CHAPTER 6. EXAMPLES 87

lc1, lc2, mvf, coords1, coords2 = example_nonunique()

Create two representations of a simplicial complex and one multivector field which illustrates nonunique

connection matrices.

The two complexes lc1 and lc2 represent the same simplicial complex over GF(2), but differ in the ordering

of the labels.

The function returns the Lefschetz complexes lc1 and lc2, as well as the multivector field mvf. If desired

for plotting, the fourth and fifth return values coords1 and coords2 give vectors of coordinates for the

vertices of the two complexes.

Examples

julia> lc1, lc2, mvf = example_nonunique();

julia> cm1 = connection_matrix(lc1, mvf);

julia> cm2 = connection_matrix(lc2, mvf);

julia> sparse_show(cm1.matrix)

[0 0 0 1 0 1 0 0 0]

[0 0 0 1 0 1 0 0 0]

[0 0 0 0 0 0 0 1 1]

[0 0 0 0 0 0 1 1 0]

[0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 1 1 0]

[0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0]

julia> print(cm1.labels)

["2", "7", "79", "29", "45", "67", "168", "349", "789"]

julia> sparse_show(cm2.matrix)

[0 0 0 1 0 1 0 0 0]

[0 0 0 1 0 1 0 0 0]

[0 0 0 0 0 0 1 0 1]

[0 0 0 0 0 0 1 1 0]

[0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 1 1 0]

[0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0]

julia> print(cm2.labels)

["2", "8", "78", "29", "45", "67", "168", "349", "789"]

source

As mentioned in the docstring for the function example_nonunique, the two Lefschetz complexes lc1 and lc2

both represent the above simplicial complex. However, they differ in the ordering of the vertex labels. This

can be seen from the commands

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/examples/example_nonunique.jl#L3-L52

CHAPTER 6. EXAMPLES 88

Figure 6.9: Forcing different connection matrices

julia> print(lc1.labels[1:9])

["1", "2", "3", "4", "5", "6", "7", "8", "9"]

julia> print(lc2.labels[1:9])

["1", "2", "3", "4", "5", "6", "8", "9", "7"]

In other words, lc1 and lc2 are different representations of the same complex. Nevertheless, computing the

connection matrices as in the example gives two distinct connection matrices. This is purely a consequence

of the different ordering of the rows and columns in the boundary matrix.

To shed further light on this issue, notice that the triangle at the center of the complex forms an attracting

periodic orbit, whose Conley index has Betti numbers 1 in dimensions 0 and 1. One can break this periodic

orbit by removing one of its three arrows, and replacing it with two critical cells of dimensions 0 and 1. The

next image shows two different ways of doing this.

In the image on the left, the vector ["7", "79"] is removed, while the one on the right breaks up ["8", "78"].

The corresponding modified Forman vector fields, and their connection matrices, can be created as follows:

mvf1 = deepcopy(mvf);

mvf2 = deepcopy(mvf);

deleteat!(mvf1,6);

deleteat!(mvf2,8);

cm1mod = connection_matrix(lc1, mvf1);

cm2mod = connection_matrix(lc2, mvf2);

Both of the new Forman vector fields are gradient vector fields, and in view of a result in [MW23], their con-

nection matrices are therefore uniquely determined. The connection matrix for the vector field mvf1 is of the

form

julia> sparse_show(cm1mod.matrix)

[0 0 1 0 1 0 0 0 0]

[0 0 1 0 1 0 0 0 0]

[0 0 0 0 0 0 1 1 0]

[0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 1 1 0]

[0 0 0 0 0 0 0 1 1]

CHAPTER 6. EXAMPLES 89

[0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0]

julia> print(cm1mod.labels)

["2", "7", "29", "45", "67", "79", "168", "349", "789"]

Notice that this matrix shows that there is a connection from the triangle 349 to the edge 79, but there are

no connections from the triangle 168 to the critical edge on the center triangle. In fact, up to reordering the

columns and rows, this connection matrix is the same as cm1 in the example.

Similarly, the connection matrix for the second modified Forman vector field mvf2 is uniquely determined, and

it is given by

julia> sparse_show(cm2mod.matrix)

[0 0 1 0 1 0 0 0 0]

[0 0 1 0 1 0 0 0 0]

[0 0 0 0 0 0 1 1 0]

[0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 1 1 0]

[0 0 0 0 0 0 1 0 1]

[0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0]

julia> print(cm2mod.labels)

["2", "8", "29", "45", "67", "78", "168", "349", "789"]

Now there is a connection from the triangle 168 to the edge 78, but there are no connections from the triangle

349 to the critical edge on the center triangle. This time, up to a permutation of the columns and the rows,

this connection matrix is the same as cm2 in the example.

6.7 Forcing Three Connection Matrices

The next example is taken from [MW23, Figure 2], and it revolves around the combinatorial vector field on a

simplicial complex shown in the top left part of the figure.

This combinatorial vector field is again of Forman type. It has a periodic orbit, which is shown in yellow in the

top right part of the figure. In addition to three index 1 equilibria, there are two of index 2. The top right part

shows that from these two index 2 cells there are a combined total of five connecting orbits to the index 1 cells

and to the periodic orbit. Its Morse decomposition is shown in the lower part of the figure. While the Morse

sets are indicated by different colors, the Conley-Morse graph is shown on the lower right.

As the following docstring for example_three_cm demonstrates, the connection matrix, which this time is

computed over the rationals Q, only identifies three of the five connecting orbits between index 2 invariant
sets and index 1 sets.

ConleyDynamics.example_three_cm – Method.

lc, mvf, coords = example_three_cm(mvftype)

CHAPTER 6. EXAMPLES 90

Figure 6.10: An example with three connection matrices

Create the simplicial complex and multivector field for the example from Figure 2 in the connection matrix

paper by Mrozek & Wanner.

Depending on the value of mvftype, return the periodic orbit (0=default) or one of the three gradient

(1,2,3) examples.

The function returns the Lefschetz complex lc over the rational field and the multivector field mvf. If

desired for plotting, the third return value coords gives a vector of coordinates for the vertices.

Examples

julia> lc, mvf = example_three_cm(0);

julia> cm = connection_matrix(lc, mvf);

julia> print(cm.labels)

["A", "C", "CE", "AC", "BD", "DF", "ABC", "EFG"]

julia> full_from_sparse(cm.matrix)

8×8 Matrix{Rational{Int64}}:

0 0 0 -1 -1 0 0 0

0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 -1 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

source

It turns out that this combinatorial dynamical system has multiple possible connection matrices as well. In fact,

it has three. In order to find them we use the same approach as in the last example, and break the periodic

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/examples/example_three_cm.jl#L3-L36

CHAPTER 6. EXAMPLES 91

Figure 6.11: Three different ways to break up the periodic orbit

orbit by turning one of its arrows into two critical cells. Since there are three arrows in the periodic orbit, this

can be accomplished in three different ways. They are indicated in the next figure.

The resulting Forman vector fields are all of gradient type, and therefore have a unique connection matrix.

These three vector fields can be obtained via the function example_three_cm by specifying the integer argu-

ment as 1, 2, or 3. For the first vector field one obtains the following connection matrix:

julia> lc1, mvf1 = example_three_cm(1);

julia> cm1 = connection_matrix(lc1, mvf1);

julia> print(cm1.labels)

["A", "C", "AC", "BD", "CD", "DF", "ABC", "EFG"]

julia> full_from_sparse(cm1.matrix)

8×8 Matrix{Rational{Int64}}:

0 0 -1 -1 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 0 0 -1 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 -1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

In contrast, the second vector field leads to:

julia> lc2, mvf2 = example_three_cm(2);

julia> cm2 = connection_matrix(lc2, mvf2);

CHAPTER 6. EXAMPLES 92

julia> print(cm2.labels)

["A", "D", "AC", "BD", "DE", "DF", "ABC", "EFG"]

julia> full_from_sparse(cm2.matrix)

8×8 Matrix{Rational{Int64}}:

0 0 -1 -1 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 0 0 -1 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 -1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Finally, the third gradient vector field gives:

julia> lc3, mvf3 = example_three_cm(3);

julia> cm3 = connection_matrix(lc3, mvf3);

julia> print(cm3.labels)

["A", "E", "AC", "BD", "CE", "DF", "ABC", "EFG"]

julia> full_from_sparse(cm3.matrix)

8×8 Matrix{Rational{Int64}}:

0 0 -1 -1 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 0 0 -1 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

This is finally the connection matrix that was originally returned for the Forman vector field with periodic orbit.

One could have obtained the remaining two also through cell permutations.

Notice that these threematrices combined do identify all of the above connections. It was shown in [MW23] that

these matrices are different connection matrices for the original Forman vector field with periodic orbit, as long

as the newly introduced index 1 and 0 equilibria are identified with the Conley index of the periodic solution. For

the sake of completeness, the next figure shows the Morse decompositions for all three combinatorial gradient

flows. In the Conley-Morse graphs, blue arrows correspond to the heteroclinic orbits that are identified by the

associated connection matrix.

In the Conley-Morse graphs, we used the same color yellow for the two Morse sets that are generated by

breaking the periodic orbit through the introduction of two critical cells. It can be seen from the images that

while the actual Morse set structure stays fixed, the poset order in the Conley-Morse graphs changes from case

to case.

6.8 A Lefschetz Multiflow Example

The next example is taken from [MW23, Figure 3], and it is a combinatorial multivector field on a true Lefschetz

complex, as shown in the left panel of the associated figure.

CHAPTER 6. EXAMPLES 93

Figure 6.12: Morse decompositions for the three gradient vector fields

Figure 6.13: A multiflow example with trivial connection matrix

CHAPTER 6. EXAMPLES 94

The example is a combinatorial representation of the multiflow shown on the right, which features nonunique

forward dynamics at the point labeled 5. Note that the underlying Lefschetz complex is defined as the subset
of the depicted simplicial complex, where the vertices A, B, D, E, and F have been removed. This Lefschetz

complex lc and the depicted multivector field mvf can be created using the function example_multiflow:

ConleyDynamics.example_multiflow – Method.

lc, mvf = example_multiflow()

Create the Lefschetz complex and multivector field for the example from Figure 3 in the connection matrix

paper by Mrozek & Wanner.

The function returns the Lefschetz complex lc over GF(2) and the multivector field mvf.

Examples

julia> lc, mvf = example_multiflow();

julia> cm = connection_matrix(lc, mvf);

julia> sparse_show(cm.matrix)

[0 0 0 0]

[0 0 0 0]

[0 0 0 0]

[0 0 0 0]

julia> print(cm.labels)

["BD", "DF", "AC", "CE"]

source

As the docstring shows, this example has a trivial connection matrix. In other words, there are no connecting

orbits in this combinatorial dynamical system that are forced by topology. In fact, one can easily see that

due to the multivalued nature of the dynamical system, one cannot expect any particular heteroclinic to be

present.

The Morse decomposition of the system, and the associated Conley indices encompass precisely the four

critical edges:

julia> cm.morse

4-element Vector{Vector{String}}:

["BD"]

["DF"]

["AC"]

["CE"]

julia> cm.conley

4-element Vector{Vector{Int64}}:

[0, 1, 0]

[0, 1, 0]

[0, 1, 0]

[0, 1, 0]

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/examples/example_multiflow.jl#L3-L27

CHAPTER 6. EXAMPLES 95

Figure 6.14: A small Lefschetz complex with periodic orbit

Combined with the fact that the connection matrix is trivial, this means that the homology of the underlying

Lefschetz complex lc is the sum of the Conley indices of the Morse sets. This can be confirmed using the

function homology:

julia> homology(lc)

3-element Vector{Int64}:

0

4

0

As we mentioned earlier, this is the same as the relative homology of the full simplicial complex with respect

to the union of the five removed vertices.

6.9 Small Complex with Periodicity

In [MW23, Figure 4] we introduced a small Lefschetz complex with periodic orbit and nonunique connection

matrices. This complex consists of one 2-cell, three 1-cells, and two 0-cells, and it is shown in the leftmost

panel of the figure.

On the complex, consider the multivector field depicted in the middle of the figure, which consists of the critical

cells α and b, as well as the two regular multivectors {A, a} and {B, c}. For this small example, one can easily
determine the Morse decomposition, and it is shown in the rightmost panel. The example can be generated in

ConleyDynamics.jl using the function example_small_periodicity:

ConleyDynamics.example_small_periodicity – Method.

lc1, lc2, mvf = example_small_periodicity()

Create two representations of the Lefschetz complex and the multivector field for the example from Figure

4 in the connection matrix paper by Mrozek & Wanner.

The complexes lc1 and lc2 are just two representations of the same complex, but they lead to different

connection matrices. Both Lefschetz complexes are defined over the finite field GF(2).

The function returns the Lefschetz complexes lc1 and lc2, as well as the multivector field mvf.

Examples

julia> lc1, lc2, mvf = example_small_periodicity();

julia> cm1 = connection_matrix(lc1, mvf);

https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 6. EXAMPLES 96

julia> cm2 = connection_matrix(lc2, mvf);

julia> full_from_sparse(cm1.matrix)

4×4 Matrix{Int64}:

0 0 0 0

0 0 0 1

0 0 0 1

0 0 0 0

julia> print(cm1.labels)

["A", "a", "b", "alpha"]

julia> full_from_sparse(cm2.matrix)

4×4 Matrix{Int64}:

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

julia> print(cm2.labels)

["A", "c", "b", "alpha"]

source

The function provides two different representations of the same Lefschetz complex, which only differ in the

ordering of the 1-cells. This can be seen from the commands:

julia> print(lc1.labels)

["A", "B", "a", "b", "c", "alpha"]

julia> print(lc2.labels)

["A", "B", "c", "a", "b", "alpha"]

As the above docstring shows, these different versions lead to two different connection matrices cm1 and cm2.

In this small example, one can easily determine the connection matrices directly, as illustrated in the second

figure. While the detailed explanation can be found in [MW23], this is basically accomplished by contracting

one of the two regular multivectors. If one contracts {B, c}, then the connection matrix cm1 is obtained, while
cm2 is the result of contracting {A, a}.

6.10 Subdividing a Multivector

Our next example taken from [MW23] is concerned with turning a given multivector field into a Forman vector

field by further subdividing the multivectors. For this, consider the three complexes and combinatorial vector

fields shown in the associated figure, see also [MW23, Figure 11].

The depicted combinatorial dynamical systems all use the same Lefschetz complex, which is obtained from a

simplicial complex by removing two vertices. In addition to the multivector field shown in the leftmost panel,

we also consider two Forman vector fields. Notice that the multivector field has one multivector of size four,

which is given by {C,AC,BC,ABC}. This vector can be split into two Forman arrows, and in view of the
required local closedness this can be achieved in precisely two ways. The splitting into the arrows {C,AC}
and {BC,ABC} gives the Forman vector field shown in the middle panel, while the one depicted in the

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/examples/example_small_periodicity.jl#L3-L46

CHAPTER 6. EXAMPLES 97

Figure 6.15: Direct derivation of connection matrices

Figure 6.16: Subdividing a multivector

rightmost panel uses the arrows {C,BC} and {AC,ABC}. These fields can be created using the function
example_subdivision:

ConleyDynamics.example_subdivision – Method.

lc, mvf = example_subdivision(mvftype)

Create the Lefschetz complex and multivector field for the example from Figure 11 in the connection matrix

paper by Mrozek & Wanner.

Depending on the value of mvftype, return the multivector (0=default) or one of the two combinatorial

vector field (1,2) examples.

The function returns the Lefschetz complex lc over the rationals and the multivector field mvf.

Examples

julia> lc, mvf = example_subdivision(1);

CHAPTER 6. EXAMPLES 98

julia> cm = connection_matrix(lc, mvf);

julia> full_from_sparse(cm.matrix)

5×5 Matrix{Rational{Int64}}:

0 0 -1 -1 -1

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

source

The different combinatorial vector fields can be selected via the function argument, which is an integer between

0 and 2, from left to right in the figure. Thus, all fields and connection matrices can be computed using the

commands

lc0, mvf0 = example_subdivision(0)

lc1, mvf1 = example_subdivision(1)

lc2, mvf2 = example_subdivision(2)

cm0 = connection_matrix(lc0,mvf0)

cm1 = connection_matrix(lc1,mvf1)

cm2 = connection_matrix(lc2,mvf2)

All three vector fields give rise to the same Morse decomposition, since in each case the vectors of length at

least two are regular. This can be seen for the multivector field below, and is analogous for the two Forman

vector fields.

julia> cm0.morse

5-element Vector{Vector{String}}:

["A"]

["B"]

["AB"]

["CD"]

["CE"]

julia> cm0.conley

5-element Vector{Vector{Int64}}:

[1, 0, 0]

[1, 0, 0]

[0, 1, 0]

[0, 1, 0]

[0, 1, 0]

The three connection matrices are as follows:

julia> full_from_sparse(cm0.matrix)

5×5 Matrix{Rational{Int64}}:

0 0 -1 0 0

0 0 1 -1 -1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/examples/example_subdivision.jl#L3-L29

CHAPTER 6. EXAMPLES 99

Figure 6.17: A combinatorial Lorenz system

julia> full_from_sparse(cm1.matrix)

5×5 Matrix{Rational{Int64}}:

0 0 -1 -1 -1

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

julia> full_from_sparse(cm2.matrix)

5×5 Matrix{Rational{Int64}}:

0 0 -1 0 0

0 0 1 -1 -1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Notice that the connection matrices for the two Forman vector fields are uniquely determined, since both are

gradient vector fields. The matrices are, however, different. At first glance, the connection matrix for mvf0

is equal to the one for mvf2. Yet, this is another example of nonuniqueness, and one could produce also the

connection matrix for mvf1 through a reordering of the cells in the Lefschetz complex.

6.11 A Combinatorial Lorenz System

Our last example is taken from [KMW16, Figure 3]. It is a Forman vector field on a two-dimensional simplicial

complex, as shown in the accompanying figure.

Notice that the underlying simplicial complex does not represent a manifold in this case, but rather a branched

manifold. As indicated in the figure, the two triangles hin and hio only intersect in the edge hi, and this
edge is also contained in the third triangle chi. This system is a combinatorial version of the famous Lorenz

butterfly, which is well-known for its chaotic behavior. The simplicial complex and the Forman vector field can

CHAPTER 6. EXAMPLES 100

be created using the function example_clorenz:

ConleyDynamics.example_clorenz – Method.

lc, mvf = example_clorenz()

Create the simplicial complex and multivector field for the example from Figure 3 in the JCD 2016 paper

by Kaczynski, Mrozek, and Wanner.

The function returns the Lefschetz complex lc over the finite field GF(2) and the multivector field mvf.

Examples

julia> lc, mvf = example_clorenz();

julia> cm = connection_matrix(lc, mvf);

julia> sparse_show(cm.matrix)

[0 0 0 0 1]

[0 0 0 0 0]

[0 0 0 0 1]

[0 0 0 0 0]

[0 0 0 0 0]

julia> print(cm.labels)

["i", "ip", "g", "gm", "bc"]

julia> ms, ps = morse_sets(lc, mvf, poset=true);

julia> [conley_index(lc, mset) for mset in ms]

4-element Vector{Vector{Int64}}:

[1, 1, 0]

[1, 1, 0]

[0, 1, 0]

[0, 0, 0]

julia> ps

4×4 Matrix{Bool}:

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 0

source

The first of the above commands creates the simplicial complex lc and the Forman vector field mvf. These are

then analyzed using the following commands:

• Using cm = connection_matrix(lc, mvf) one can compute the connectionmatrix of the example. This

connection matrix has two nonzero entries, which indicate connecting orbits from the index 1 critical cell

bc to each of the stable periodic orbits spanned by the vertices h, g, m and i, j, p, respectively.

• The command ms, ps = morse_sets(lc, mvf, poset=true) shows, however, that there is more to

this example. While the above connection matrix indicates only three isolated invariant sets, there is

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/examples/example_clorenz.jl#L3-L45

CHAPTER 6. EXAMPLES 101

actually a fourth one. In view of the Conley index computation for these sets, the additional Morse set

has trivial index, and therefore does not show up in the connection matrix. Notice that the partial order

given by the flow, which is indicated by the matrix ps, implies that the Morse set with trivial index has

a connection to the index 1 critical cell.

Upon closer inspection one can see that the last Morse set is comprised of all triangles, as well as all edges

which are contained in at least two triangles. This set contains infinitely many periodic orbits. For any bi-infinite

sequence of symbolsL andR there is a periodic orbit which loops around the left hole forL and around the right
hole for R, as one traverses the symbol sequence from left to right. Such behavior is one potential indicator

for chaos. In fact, it was shown in [MW21] that it is possible to define a classical semiflow on the branched

manifold defined by lc which mimics the behavior of the Forman vector field. And according to [MSTW22],

any such admissible semiflow does indeed have infinitely many periodic orbits in the set determined by the

triangles.

6.12 References

See the full bibliography for a complete list of references cited throughout this documentation. This section

cites the following references:

[BKMW20] B. Batko, T. Kaczynski, M. Mrozek and T. Wanner. Linking combinatorial and classical dynamics:

Conley index and Morse decompositions. Foundations of Computational Mathematics 20, 967–1012

(2020).

[KMW16] T. Kaczynski, M. Mrozek and T. Wanner. Towards a formal tie between combinatorial and classical

vector field dynamics. Journal of Computational Dynamics 3, 17–50 (2016).

[MSTW22] M. Mrozek, R. Srzednicki, J. Thorpe and T. Wanner. Combinatorial vs. classical dynamics:

Recurrence. Communications in Nonlinear Science and Numerical Simulation 108, Paper No. 106226,

30 pages (2022).

[MW21] M. Mrozek and T. Wanner. Creating semiflows on simplicial complexes from combinatorial vector

fields. Journal of Differential Equations 304, 375–434 (2021).

[MW23] M. Mrozek and T. Wanner. Connection matrices in combinatorial topological dynamics,

arXiv:2103.04269 (2023).

https://doi.org/10.1007/s10208-020-09444-1
https://doi.org/10.3934/jcd.2016002
https://doi.org/10.1016/j.cnsns.2021.106226
https://doi.org/10.1016/j.cnsns.2021.106226
https://doi.org/10.1016/j.jde.2021.10.001
https://doi.org/10.48550/arXiv.2103.04269

Chapter 7

Sparse Matrices

While Julia provides a data structure for sparse matrix computations, the employed design decisions make

it difficult to use this implementation for computations over finite fields. This is mainly due to the fact that

in the Julia implementation, it is assumed that one can determine the zero and one elements from the data

type alone. However, a finite field data type generally also depends on additional parameters, such as the

characteristic of the field.

Since the algorithms underlying ConleyDynamics.jl only require basic row and column operations, a specialized

sparse matrix implementation is provided in the package. It is briefly described in the following.

7.1 Sparse Matrix Format

Sparse matrices in this package have to be of the composite data type SparseMatrix, which is structured as

follows:

ConleyDynamics.SparseMatrix – Type.

SparseMatrix{T}

Composite data type for a sparse matrix with entries of type T.

The struct has the following fields:

• const nrow::Int: Number of rows

• const ncol::Int: Number of columns

• const char::Int: Characteristic of type T

• const zero::T: Number 0 of type T

• const one::T: Number 1 of type T

• entries::Vector{Vector{T}}: Matrix entries corresponding to columns

• columns::Vector{Vector{Int}}: column[k] points to nonzero entries in column k

• rows::Vector{Vector{Int}}: rows[k] points to nonzero entries in the k-th row

source

In this struct, the type T has to be either Int or Rational{Int}, depending on whether the sparse matrix is

interpreted as a matrix with entries in the finite field GF (p) for some prime p, or over the field of rationals,
respectively. The data type has the following fields:

102

https://almost6heads.github.io/ConleyDynamics.jl
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/sparse/sparse_type.jl#L3-L17

CHAPTER 7. SPARSE MATRICES 103

• nrow::Int designates the number of rows.

• ncol::Int gives the number of columns.

• char::Int specifies the characteristic of the underlying field F . If char=0, then the field is the rationals
Q, and one has to have T = Rational{Int}. If, on the other hand, the finite field F = GF (p) is used,
then char=p has to be a prime number. In this case, the data type of the matrix entries has to be T =

Int.

• zero::T provides 0 in the data type T.

• one::T provides 1 in the data type T.

• columns::Vector{Vector{Int}} is a vector of integer vectors, which contains the row indices of nonzero

matrix entries in each column. More precisely, columns[k] contains an increasing list of row indices,

which give the locations of all nonzero entries in column k. Note that the list for each colum has to be

strictly increasing.

• rows::Vector{Vector{Int}} is a vector of integer vectors, which contains the column indices of nonzero

matrix entries in each row. It is the precise dual to the previous field. This time, rows[k] contains an

increasing list of column indices, which correspond to the nonzero entries of the matrix in the k-th row.

• entries::Vector{Vector{T}} is a vector of vectors which contains the actual matrix entries. It is

organized in exactly the same way as the field columns. In other words, for every k = 1,..,ncol the

matrix entry in column k and row columns[k][j] is given by entries[k][j], where j indexes the

nonzero column entries from top to bottom.

This data structure is clearly redundant, in the sense that the field rows is not needed to uniquely determine

the matrix. However, the type SparseMatrix is fundamental for almost every aspect of ConleyDynamics.jl,

as it is used to encode the incidence coefficient map κ, and therefore also the matrix representation of the
boundary operator ∂. And for many operations on or queries of Lefschetz complexes, one needs fast access to
both the cells in the boundary and the coboundary of a given cells. While the boundary can easily be accessed

via the field columns, the fast coboundary access is aided by the field rows.

We would like to point out that in view of the different underlying fields, sparse matrices should only be ma-

nipulated using the specific commands provided by the package. These are described in detail below. If there

is a need for additional functionality beyond these first methods, it can be added at a later point in time.

7.2 Creating Sparse Matrices

The package provides a number of methods for creating sparse matrices with the data type SparseMatrix.

These are geared towards their usage within ConleyDynamics.jl and are therefore by no means exhaustive:

• sparse_from_full is usually invoked in the form A = sparse_from_full(AF, p=PP). The first input

argument AF has to be a regular Julia integer matrix. This matrix is then converted to sparse format

and returned as A. If the optional parameter p is omitted, the resulting sparse matrix is over the rational

numbers Q, otherwise it is over the finite field with characteristic PP.

• full_from_sparse converts a given sparse matrix into a standard full matrix in Julia. The data type of

the entries is either Rational{Int} or Int, depending on whether the sparse input matrix is considered

over the rationals Q or over a finite field, respectively. When invoking this command, be mindful of the

size of the sparse matrix!

• sparse_from_lists creates a sparse matrix solely based on its nonzero entries and their locations. It

expects the following required input arguments, in the order they are listed:

https://almost6heads.github.io/ConleyDynamics.jl
https://almost6heads.github.io/ConleyDynamics.jl

CHAPTER 7. SPARSE MATRICES 104

– nr::Int: Number of rows

– nc::Int: Number of columns

– tchar: Field characteristic, which has to be 0 if F = Q and a positive prime otherwise

– tzero::T: Number 0 of type T

– tone::T: Number 1 of type T

– r::Vector{Int}: Vector of row indices

– c::Vector{Int}: Vector of column indices

– v::Vector{T}: Vector of matrix entries

The function assumes that the vectors r, c, and v have the same length and that the matrix has entry

v[k] at the location (r[k],c[k]). Zero entries will be ignored, and multiple entries for the same matrix

position raise an error. Furthermore, if tchar>0, then the entries in v are all replaced by their values

modulo tchar. As mentioned before, if tchar=0 then the entry type has to be T = Rational{Int},

otherwise we have T = Int.

• lists_from_sparse takes a sparse matrix and disassembles it into the separate ingredients spec-

ified in the discussion of the previous function. In this sense, it is precisely the inverse method of

sparse_from_lists.

• sparse_identity creates a sparse identity matrix. It is invoked as A = sparse_identity(n, p=PP),

and returns a sparse identity matrix A with n rows and n columns. If the optional characteristic param-

eter specified and positive, then the matrix is considered over the finite field with characteristic PP,

otherwise it is over the rationals\mathbb{Q}‘.

Of these methods, the function sparse_from_lists provides the easiest and quickest way to create a sparse

matrix.

7.3 Sparse Matrix Access

Access to the entries of sparse matrices is provided via the following commands:

• sparse_get_entry extracts the matrix entry val of the matrix A located in row ri and column ci, if it

is invoked using the command val = sparse_get_entry(A,ri,ci).

• sparse_set_entry! sets the matrix entry of the matrix A located in row ri and column ci to the value

'val', if it is invoked using the command sparse_set_entry!(A,ri,ci,val). Internally, this commands

makes sure that the above-defined format of the fields of a sparse matrix is preserved. Note that the

data type of val has to match the type of A.zero. Moreover, if the matrix is considered over a finite

field the value val has to be given as an integer between 0 and A.char-1.

• sparse_get_column is invoked as Acol = sparse_get_column(A,ci), and it returns the full ci-th col-

umn of the matrix A as a Vector{T} of length A.nrow.

• sparse_get_nz_column returns the row indices for the nonzero entries in the ci-th column of the sparse

matrix A, if invoked as rivec = sparse_get_nz_column(A,ci).

• sparse_minor creates a minor from a given sparse matrix A. For this, one needs to specify the row

and column indices of the minor in the integer vectors rvec and cvec, respectively, and then invoke

the function using the command AM = sparse_minor(A,rvec,cvec). Note that the entries in rvec and

cvec do not have to be in increasing order, but they are not allowed to contain repeated indices.

One can also read and set sparse matrix values using the overloaded methods y = A[i,j] and A[i,j] = val.

In the latter case, it is up to the user to make sure that val respects the underlying sparse matrix field.

CHAPTER 7. SPARSE MATRICES 105

7.4 Elementary Matrix Operations

The following commands perform the basic sparse matrix operations that are needed for the functionality of

the package:

• sparse_add_column! is invoked using the form sparse_add_column!(A,ci1,ci2,cn,cd), and it re-

places the ci1-th column column[ci1] of A by column[ci1] + (cn/cd) * column[ci2]. This opera-

tion automatically performs the computations over the field F underlying the sparse matrix A. In other

words, if this field is finite, then it determines the inverse of the argument cd as part of the computation.

• sparse_add_row! is invoked using the form sparse_add_row!(A,ri1,ri2,cn,cd), and it replaces the

ri1-th row row[ri1] of A by row[ri1] + (cn/cd) * row[ri2]. As before, this operation automatically

performs the computations over the field F underlying the sparse matrix A.

• sparse_permute creates a new sparse matrix by permuting the row and column indices. It is invoked us-

ing the command AP = sparse_permute(A,pr,pc), and the integer vectors pr and pc have to describe

the row and column permutations, respectively.

• sparse_remove! is invoked as sparse_remove!(A,ri,ci) and removes the sparse matrix entry in the

ri-th row and ci-th colum, i.e., it effectively sets the entry equal to zero.

• sparse_multiply computes the matrix product of two sparse matrices. Exceptions are raised if the

matrix product is not defined, or if the involved sparse matrices are defined over different fields. One

can also use the operator form A*B to compute the product of sparse matrices.

As mentioned earlier, additional operations can easily be implemented if they become necessary.

7.5 Sparse Matrix Information

Finally, ConleyDynamics.jl provides the following functions for quickly extracting certain information from

sparse matrices:

• sparse_size is invoked as size = sparse_size(A,dim), and it returns the number of rows if dim=1, or

the number of columns for dim=2.

• sparse_low returns the largest row index ri of a nonzero entry in the ci-th column of the matrix A, if

used in the form ri = sparse_low(A,ci). In other words, it returns the row index of the lowest nonzero

matrix entry in the column.

• sparse_is_sut checks whether a given sparse matrix is strictly upper triangular, and returns either

true or false.

• sparse_fullness returns the fullness of a sparse matrix as a floating point number. Here fullness refers

to the ratio of the number of nonzero matrix elements and the total number of matrix entries.

• sparse_sparsity computes the sparseness of a sparse matrix, which is defined as 1 minus its fullness,
i.e., it is the ratio of the number of zero matrix elements and the total number of matrix entries.

• sparse_show can be used to display a sparse matrix in traditional matrix form at the Julia REPL prompt.

https://almost6heads.github.io/ConleyDynamics.jl

Chapter 8

References

[Ale37] P. Alexandrov. Diskrete Räume. Mathematiceskii Sbornik (N.S.) 2, 501–518 (1937).

[BKMW20] B. Batko, T. Kaczynski, M. Mrozek and T. Wanner. Linking combinatorial and classical dynamics:

Conley index and Morse decompositions. Foundations of Computational Mathematics 20, 967–1012

(2020).

[Con78] C. Conley. Isolated Invariant Sets and the Morse Index (American Mathematical Society, Providence,

R.I., 1978).

[DKMW11] P. Dłotko, T. Kaczynski, M. Mrozek and T. Wanner. Coreduction homology algorithm for regular

CW-complexes. Discrete & Computational Geometry 46, 361–388 (2011).

[DLMS24] T. K. Dey, M. Lipiński, M. Mrozek and R. Slechta. Computing connection matrices via

persistence-like reductions. SIAM Journal on Applied Dynamical Systems 23, 81–97 (2024).

[DW18] P. Dłotko and T. Wanner. Rigorous cubical approximation and persistent homology of continuous

functions. Computers & Mathematics with Applications 75, 1648–1666 (2018).

[EH10] H. Edelsbrunner and J. L. Harer. Computational Topology (American Mathematical Society,

Providence, 2010).

[For98a] R. Forman. Combinatorial vector fields and dynamical systems. Mathematische Zeitschrift 228,

629–681 (1998).

[For98b] R. Forman. Morse theory for cell complexes. Advances in Mathematics 134, 90–145 (1998).

[Fra89] R. Franzosa. The connection matrix theory for Morse decompositions.

Transactions of the American Mathematical Society 311, 561–592 (1989).

[GMW05] M. Gameiro, K. Mischaikow and T. Wanner. Evolution of pattern complexity in the Cahn-Hilliard

theory of phase separation. Acta Materialia 53, 693–704 (2005).

[HMS21] S. Harker, K. Mischaikow and K. Spendlove. A computational framework for connection matrix

theory. Journal of Applied and Computational Topology 5, 459–529 (2021).

[KMM04] T. Kaczynski, K. Mischaikow and M. Mrozek. Computational Homology. Vol. 157 of Applied

Mathematical Sciences (Springer-Verlag, New York, 2004).

[KMW16] T. Kaczynski, M. Mrozek and T. Wanner. Towards a formal tie between combinatorial and classical

vector field dynamics. Journal of Computational Dynamics 3, 17–50 (2016).

[Lef42] S. Lefschetz. Algebraic Topology. Vol. 27 of American Mathematical Society Colloquium Publications

(American Mathematical Society, New York, 1942).

106

https://doi.org/10.1007/s10208-020-09444-1
https://doi.org/10.1007/s00454-010-9303-y
https://doi.org/10.1137/23M1562469
https://doi.org/10.1016/j.camwa.2017.11.027
https://doi.org/10.1007/PL00004638
https://doi.org/10.1007/PL00004638
https://doi.org/10.1006/aima.1997.1650
https://doi.org/10.1016/j.actamat.2004.10.022
https://doi.org/10.1007/s41468-021-00073-3
https://doi.org/10.3934/jcd.2016002

CHAPTER 8. REFERENCES 107

[LKMW23] M. Lipinski, J. Kubica, M. Mrozek and T. Wanner. Conley-Morse-Forman theory for generalized

combinatorial multivector fields on finite topological spaces.

Journal of Applied and Computational Topology 7, 139–184 (2023).

[Mas91] W. S. Massey. A Basic Course in Algebraic Topology. Vol. 127 of Graduate Texts in Mathematics

(Springer-Verlag, New York, 1991).

[MB09] M. Mrozek and B. Batko. Coreduction homology algorithm. Discrete & Computational Geometry 41,

96–118 (2009).

[MSTW22] M. Mrozek, R. Srzednicki, J. Thorpe and T. Wanner. Combinatorial vs. classical dynamics:

Recurrence. Communications in Nonlinear Science and Numerical Simulation 108, Paper No. 106226,

30 pages (2022).

[MW21] M. Mrozek and T. Wanner. Creating semiflows on simplicial complexes from combinatorial vector

fields. Journal of Differential Equations 304, 375–434 (2021).

[MW23] M. Mrozek and T. Wanner. Connection matrices in combinatorial topological dynamics,

arXiv:2103.04269 (2023).

[Mun84] J. R. Munkres. Elements of Algebraic Topology (Addison-Wesley, Menlo Park, 1984).

[SW24] E. Sander and T. Wanner. Theory and Numerics of Partial Differential Equations (SIAM, Philadelphia,

2024). In preparation, 1007 pages.

[SW14a] T. Stephens and T. Wanner. Isolating block validation in Matlab,

https://github.com/almost6heads/isoblockval (2014).

[SW14b] T. Stephens and T. Wanner. Rigorous validation of isolating blocks for flows and their Conley indices.

SIAM Journal on Applied Dynamical Systems 13, 1847–1878 (2014).

[GUD24] GUDHI Project. GUDHI User and Reference Manual. 3.10.1 Edition (GUDHI Editorial Board, 2024).

https://doi.org/10.1007/s41468-022-00102-9
https://doi.org/10.1016/j.cnsns.2021.106226
https://doi.org/10.1016/j.cnsns.2021.106226
https://doi.org/10.1016/j.jde.2021.10.001
https://doi.org/10.48550/arXiv.2103.04269
https://doi.org/10.48550/arXiv.2103.04269
https://doi.org/10.1137/140971075
https://gudhi.inria.fr/doc/3.10.1/

Part III

Core API

108

Chapter 9

Composite Data Structures

The package relies on a number of basic composite data structures that encompass more complicated objects.

For the internal representation of sparse matrices we refer to Internal Sparse Matrix Representation.

ConleyDynamics – Module.

module ConleyDynamics

Collection of tools for computational Conley theory.

source

9.1 Lefschetz Complex Type

ConleyDynamics.LefschetzComplex – Type.

LefschetzComplex

Collect the Lefschetz complex information in a struct.

The struct is created via the following fields:

• labels::Vector{String}: Vector of labels associated with cell indices

• dimensions::Vector{Int}: Vector cell dimensions

• boundary::SparseMatrix: Boundary matrix, columns give the cell boundaries

It is expected that the dimensions are given in increasing order, and that the square of the boundary matrix

is zero. Otherwise, exceptions are raised. In addition, the following fields are created during initialization:

• ncells::Int: Number of cells

• dim::Int: Dimension of the complex

• indices::Dict{String,Int}: Dictionary for finding cell index from label

The coefficient field is specified by the boundary matrix.

source

109

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/ConleyDynamics.jl#L1-L5
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/conley/composite_types.jl#L3-L19

CHAPTER 9. COMPOSITE DATA STRUCTURES 110

9.2 Cell Subset Types

ConleyDynamics.Cells – Type.

Cells = Union{Vector{Int},Vector{String}}

A list of cells of a Lefschetz complex.

This data type is used to represent subsets of a Lefschetz complex. It is used for individual isolated invariant

sets, locally closed subsets, and multivectors.

source

ConleyDynamics.CellSubsets – Type.

CellSubsets = Union{Vector{Vector{Int}},Vector{Vector{String}}}

A collection of cell lists.

This data type is used to represent a collection of subsets of a Lefschetz complex. It is used for Morse

decompositions and for multivector fields.

source

9.3 Conley-Morse Graph Type

ConleyDynamics.ConleyMorseCM – Type.

ConleyMorseCM{T}

Collect the connection matrix information in a struct.

The struct has the following fields:

• matrix::SparseMatrix{T}: Connection matrix

• columns::Vector{Int}: Corresponding columns in the boundary matrix

• poset::Vector{Int}: Poset indices for the connection matrix columns

• labels::Vector{String}: Labels for the connection matrix columns

• morse::Vector{Vector{String}}: Vector of Morse sets in original complex

• conley::Vector{Vector{Int}}: Vector of Conley indices for the Morse sets

• complex::LefschetzComplex: The Conley complex as a Lefschetz complex

source

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/conley/composite_types.jl#L106-L114
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/conley/composite_types.jl#L117-L125
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/conley/composite_types.jl#L82-L95

Chapter 10

Lefschetz Complex Functions

10.1 Simplicial Complexes

ConleyDynamics.create_simplicial_complex – Function.

create_simplicial_complex(labels::Vector{String},

simplices::Vector{Vector{Int}};

p::Int=2)

Initialize a Lefschetz complex from a simplicial complex. The complex is over the rationals if p=0, and over

GF(p) if p>0.

The vector labels contains a label for every vertex, while simplices contains all the highest-dimensional

simplices necessary to define the simplicial complex. Every simplex is represented as a vector of Int, with

entries corresponding to the vertex indices.

Warning

Note that the labels all have to have the same character length!

source

create_simplicial_complex(labels::Vector{String},

simplices::Vector{Vector{String}};

p::Int=2)

Initialize a Lefschetz complex from a simplicial complex. The complex is over the rationals if p=0, and over

GF(p) if p>0.

The vector labels contains a label for every vertex, while simplices contains all the highest-dimensional

simplices necessary to define the simplicial complex.

source

ConleyDynamics.create_simplicial_rectangle – Function.

111

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/create_simplicial_complex.jl#L3-L18
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/create_simplicial_complex.jl#L130-L141

CHAPTER 10. LEFSCHETZ COMPLEX FUNCTIONS 112

create_simplicial_rectangle(nx::Int, ny::Int; p::Int=2)

Create a simplicial complex covering a rectangle in the plane. The complex is over the rationals if p=0, and

over GF(p) if p>0.

The rectangle is given by the subset [0,nx] x [0,ny] of the plane. Each unit square is represented by

four triangles, which meet in the center point of the square. Labels have the following meaning:

• The label XXXYYYb corresponds to the point (XXX, YYY).

• The label XXXYYYc corresponds to (XXX + 1/2, YYY + 1/2).

The number of characters in XXX and YYY matches the number of digits of the larger number of nx and ny.

The function returns the following objects:

• A simplicial complex sc::LefschetzComplex.

• A vector coords::Vector{Vector{Float64}} of vertex coordinates.

source

ConleyDynamics.create_simplicial_delaunay – Function.

create_simplicial_delaunay(boxw::Real, boxh::Real, pdist::Real, attmpt::Int;

p::Int=2)

Create a planar Delaunay triangulation inside a box. The complex is over the rationals if p=0, and over

GF(p) if p>0.

The function selects a random sample of points inside the rectangular box [0,boxw] x [0,boxh], while

trying to maintain a minimum distance of pdist between the points. The argument attmpt specifies the

number of attempts when trying to add points. A standard value is 20, and larger values tend to fill holes

better, but at the expense of runtime. From the random sample, the function then creates a Delaunay

triangulation, and returns the following objects:

• A simplicial complex sc::LefschetzComplex.

• A vector coords::Vector{Vector{Float64}} of vertex coordinates.

Note that the function does not provide a full triangulation of the given rectangle. Close to the boundary

there will be gaps.

source

create_simplicial_delaunay(boxw::Real, boxh::Real, npoints::Int;

p::Int=2)

Create a planar Delaunay triangulation inside a box. The complex is over the rationals if p=0, and over

GF(p) if p>0.

The function selects a random sample of npoints points inside the rectangular box [0,boxw] x [0,boxh].

From the random sample, the function then creates a Delaunay triangulation, and returns the following

objects:

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/create_simplicial_rectangle.jl#L3-L22
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/create_simplicial_delaunay.jl#L3-L23

CHAPTER 10. LEFSCHETZ COMPLEX FUNCTIONS 113

• A simplicial complex sc::LefschetzComplex.

• A vector coords::Vector{Vector{Float64}} of vertex coordinates.

Note that the function does not provide a full triangulation of the given rectangle. Close to the boundary

there will be gaps.

source

10.2 Cubical Complexes

ConleyDynamics.create_cubical_complex – Function.

create_cubical_complex(cubes::Vector{String}; p::Int=2)

Initialize a Lefschetz complex from a cubical complex. The complex is over the rationals if p=0, and over

GF(p) if p>0.

The vector cubes contains a list of all the highest-dimensional cubes necessary to define the cubical com-

plex. Every cube is represented as a string as follows:

• d integers, which correspond to the coordinates of a point in d-dimensional Euclidean space

• a point .

• d integers 0 or 1, which give the interval length in the respective dimension

The first d integers all have to occupy the same number of characters. In addition, if the occupied space is

L characters for each coordinate, the coordinates only can take values from 0 to 10^L - 2. This is due to the

fact that the boundary operator will add one to certain coordinates, and they still need to be representable

withing the same L digits.

For example, the string 030600.101 corresponds to the point (3,6,0) in three dimensions. The dimensions

are 1, 0, and 1, and therefore this string corresponds to the cube [3,4] x [6] x [0,1]. The same cube

could have also been represented by 360.101 or by 003006000.101.

Warning

Note that the labels all have to have the same format!

Example

julia> cubes = ["00.11", "01.01", "02.10", "11.10", "11.01", "22.00"];

julia> lc = create_cubical_complex(cubes);

julia> lc.ncells

17

julia> homology(lc)

3-element Vector{Int64}:

2

1

0

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/create_simplicial_delaunay.jl#L78-L94

CHAPTER 10. LEFSCHETZ COMPLEX FUNCTIONS 114

source

ConleyDynamics.create_cubical_rectangle – Function.

create_cubical_rectangle(nx::Int, ny::Int;

p::Int=2, randomize::Real=0.0)

Create a cubical complex covering a rectangle in the plane. The complex is over the rationals if p=0, and

over GF(p) if p>0.

The rectangle is given by the subset [0,nx] x [0,ny] of the plane, and each unit square gives a two-

dimensional cube in the resulting cubical complex. The function returns the following objects:

• A cubical complex cc::LefschetzComplex

• A vector coords::Vector{Vector{Float64}} of vertex coordinates

If the optional parameter randomize is assigned a positive real fraction r less that 0.5, then the actual

coordinates will be randomized. They are chosen uniformly from discs of radius r centered at each vertex.

source

ConleyDynamics.create_cubical_box – Function.

create_cubical_box(nx::Int, ny::Int, nz::Int;

p::Int=2, randomize::Real=0.0)

Create a cubical complex covering a box in space. The complex is over the rationals if p=0, and over GF(p)

if p>0.

The box is given by the subset [0,nx] x [0,ny] x [0,nz] of space, and each unit cube gives a three-

dimensional cube in the resulting cubical complex. The function returns the following objects:

• A cubical complex cc::LefschetzComplex

• A vector coords::Vector{Vector{Float64}} of vertex coordinates

If the optional parameter randomize is assigned a positive real fraction r less that 0.5, then the actual

coordinates will be randomized. They are chosen uniformly from balls of radius r centered at each vertex.

source

ConleyDynamics.cube_field_size – Function.

cube_field_size(cube::String)

Determine the field sizes of a given cube label.

The function returns the dimension of the ambient space in the first output parameter pointdim, and the

length of the individual coordinate fields in the second return variable pointlen.

Example

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/create_cubical_complex.jl#L3-L46
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/create_cubical_rectangle.jl#L3-L21
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/create_cubical_box.jl#L3-L21

CHAPTER 10. LEFSCHETZ COMPLEX FUNCTIONS 115

julia> cube_field_size("011654003020.0110")

(4, 3)

source

ConleyDynamics.cube_information – Function.

cube_information(cube::String)

Compute a cube's coordinate information.

The function returns an integer vector with the cubes coordinate information. The return vector intinfo

contains in its components the following data:

• 1:pointdim: Coordinates of the anchor point

• 1+pointdim:2*pointdim: Interval length in each dimension

• 1+2*pointdim: Dimension of the cube

Note that pointdim equals the dimension of the points specifying the cube.

Example

julia> cube_information("011654003.011")

7-element Vector{Int64}:

11

654

3

0

1

1

2

source

ConleyDynamics.cube_label – Function.

cube_label(pointdim::Int, pointlen::Int, pointinfo::Vector{Int})

Create a label from a cube's coordinate information.

The dimension of the ambient Eucliden space is pointdim, while the field length for each coordinate is

pointlen. The vector pointinfo has to be of length at least two times pointdim. The first pointdim

entries contain the coordinates of the anchor point, while the next pointdim entries are either 0 or 1

depending on the size of the interval. For example, if poindim = 3 and pointinfo = [1,2,3,1,0,1],

then we represent the cube in three-dimensional space given by [1,2] x [2] x [3 4].

Example

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/create_cubical_complex.jl#L225-L239
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/create_cubical_complex.jl#L251-L277

CHAPTER 10. LEFSCHETZ COMPLEX FUNCTIONS 116

julia> cube_label(3,2,[10,23,5,1,1,0])

"102305.110"

source

ConleyDynamics.get_cubical_coords – Function.

get_cubical_coords(cc::LefschetzComplex)

Compute the vertex coordinates for a cubical complex.

The variable cc has to contain a cubical complex, and the function returns a vector of coordinates for the

vertices of the complex, that can then be used for plotting. “‘

source

10.3 Lefschetz Complex Queries

ConleyDynamics.lefschetz_field – Function.

fieldstr = lefschetz_field(lc::LefschetzComplex)

Returns the Lefschetz complex coefficient field.

source

ConleyDynamics.lefschetz_is_closed – Function.

lefschetz_is_closed(lc::LefschetzComplex, subcomp::Vector{Int})

Determine whether a Lefschetz complex subset is closed.

source

lefschetz_is_closed(lc::LefschetzComplex, subcomp::Vector{String})

Determine whether a Lefschetz complex subset is closed.

source

ConleyDynamics.lefschetz_is_locally_closed – Function.

lefschetz_is_locally_closed(lc::LefschetzComplex, subcomp::Vector{Int})

Determine whether a Lefschetz complex subset is locally closed.

source

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/create_cubical_complex.jl#L327-L345
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/create_cubical_complex.jl#L367-L376
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/lefschetz_field.jl#L3-L7
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/lefschetz_is_closed.jl#L3-L7
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/lefschetz_is_closed.jl#L40-L44
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/lefschetz_is_locally_closed.jl#L3-L7

CHAPTER 10. LEFSCHETZ COMPLEX FUNCTIONS 117

lefschetz_is_locally_closed(lc::LefschetzComplex, subcomp::Vector{String})

Determine whether a Lefschetz complex subset is locally closed.

source

10.4 Topological Features

ConleyDynamics.lefschetz_boundary – Function.

lefschetz_boundary(lc::LefschetzComplex, cellI::Int)

Compute the support of the boundary of a Lefschetz complex cell.

This method returns the boundary support as a Vector{Int}.

source

lefschetz_boundary(lc::LefschetzComplex, cellS::String)

Compute the support of the boundary of a Lefschetz complex cell.

This method returns the boundary support as a Vector{String}.

source

ConleyDynamics.lefschetz_coboundary – Function.

lefschetz_coboundary(lc::LefschetzComplex, cellI::Int)

Compute the support of the coboundary of a Lefschetz complex cell.

This method returns the boundary support as a Vector{Int}.

source

lefschetz_coboundary(lc::LefschetzComplex, cellS::String)

Compute the support of the coboundary of a Lefschetz complex cell.

This method returns the boundary support as a Vector{String}.

source

ConleyDynamics.lefschetz_closure – Function.

lefschetz_closure(lc::LefschetzComplex, subcomp::Vector{Int})

Compute the closure of a Lefschetz complex subset.

source

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/lefschetz_is_locally_closed.jl#L28-L32
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/lefschetz_boundary.jl#L3-L9
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/lefschetz_boundary.jl#L32-L38
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/lefschetz_boundary.jl#L59-L65
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/lefschetz_boundary.jl#L88-L94
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/lefschetz_closure.jl#L3-L7

CHAPTER 10. LEFSCHETZ COMPLEX FUNCTIONS 118

lefschetz_closure(lc::LefschetzComplex, subcomp::Vector{String})

Compute the closure of a Lefschetz complex subset.

source

ConleyDynamics.lefschetz_openhull – Function.

lefschetz_openhull(lc::LefschetzComplex, subcomp::Vector{Int})

Compute the open hull of a Lefschetz complex subset.

source

lefschetz_openhull(lc::LefschetzComplex, subcomp::Vector{String})

Compute the open hull of a Lefschetz complex subset.

source

ConleyDynamics.lefschetz_lchull – Function.

lefschetz_lchull(lc::LefschetzComplex, subcomp::Vector{Int})

Compute the locally closed hull of a Lefschetz complex subset.

The locally closed hull is the smallest locally closed set which contains the given cells. It is the intersection

of the closure and the open hull.

source

lefschetz_lchull(lc::LefschetzComplex, subcomp::Vector{String})

Compute the locally closed hull of a Lefschetz complex subset.

The locally closed hull is the smallest locally closed set which contains the given cells. It is the intersection

of the closure and the open hull.

source

ConleyDynamics.lefschetz_clomo_pair – Function.

lefschetz_clomopair(lc::LefschetzComplex, subcomp::Vector{Int})

Determine the closure-mouth-pair associated with a Lefschetz complex subset.

The function returns the pair (closure,mouth).

source

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/lefschetz_closure.jl#L35-L39
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/lefschetz_openhull.jl#L3-L7
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/lefschetz_openhull.jl#L35-L39
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/lefschetz_lchull.jl#L3-L11
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/lefschetz_lchull.jl#L28-L36
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/lefschetz_clomo_pair.jl#L3-L9

CHAPTER 10. LEFSCHETZ COMPLEX FUNCTIONS 119

lefschetz_clomopair(lc::LefschetzComplex, subcomp::Vector{String})

Determine the closure-mouth-pair associated with a Lefschetz complex subset.

The function returns the pair (closure,mouth).

source

ConleyDynamics.lefschetz_skeleton – Function.

lefschetz_skeleton(lc::LefschetzComplex, subcomp::Vector{Int}, skdim::Int)

Compute the skdim-dimensional skeleton of a Lefschetz complex subset.

The computed skeleton is for the closure of the subcomplex given by subcomp.

source

lefschetz_skeleton(lc::LefschetzComplex, subcomp::Vector{String}, skdim::Int)

Compute the skdim-dimensional skeleton of a Lefschetz complex subset.

The computed skeleton is for the closure of the subcomplex given by subcomp.

source

lefschetz_skeleton(lc::LefschetzComplex, skdim::Int)

Compute the skdim-dimensional skeleton of a Lefschetz complex.

The computed skeleton is for the full Lefschetz complex.

source

ConleyDynamics.manifold_boundary – Function.

manifold_boundary(lc::LefschetzComplex)

Extract the manifold boundary from a Lefschetz complex.

The function expects a Lefschetz complex which represents a compact d-dimensional manifold with bound-

ary. It returns a list of all cells which lie on the topological boundary of the manifold, in the form of a

Vector{Int}.

source

10.5 Lefschetz Subcomplexes

ConleyDynamics.lefschetz_subcomplex – Function.

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/lefschetz_clomo_pair.jl#L39-L45
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/lefschetz_skeleton.jl#L3-L9
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/lefschetz_skeleton.jl#L34-L40
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/lefschetz_skeleton.jl#L56-L62
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/manifold_boundary.jl#L3-L12

CHAPTER 10. LEFSCHETZ COMPLEX FUNCTIONS 120

lefschetz_subcomplex(lc::LefschetzComplex, subcomp::Vector{Int})

Extract a subcomplex from a Lefschetz complex. The subcomplex has to be locally closed, and is given by

the collection of cells in subcomp.

source

lefschetz_subcomplex(lc::LefschetzComplex, subcomp::Vector{String})

Extract a subcomplex from a Lefschetz complex. The subcomplex has to be locally closed, and is given by

the collection of cells in subcomp.

source

ConleyDynamics.lefschetz_closed_subcomplex – Function.

lefschetz_closed_subcomplex(lc::LefschetzComplex, subcomp::Vector{Int})

Extract a closed subcomplex from a Lefschetz complex. The subcomplex is the closure of the collection of

cells given in subcomp.

source

lefschetz_closed_subcomplex(lc::LefschetzComplex, subcomp::Vector{String})

Extract a closed subcomplex from a Lefschetz complex. The subcomplex is the closure of the collection of

cells given in subcomp.

source

ConleyDynamics.permute_lefschetz_complex – Function.

permute_lefschetz_complex(lc::LefschetzComplex,

permutation::Vector{Int})

Permute the indices of a Lefschetz complex.

The vector permutation contains a permutation of the indices for the given Lefschetz complex lc. If no

permutation is specified, or if the length of the vector is not correct, then a randomly generated one will be

used. Note that the permutation has to respect the ordering of the cells by dimension, otherwise an error

is raised. In other words, the permutation has to decompose into permutations within each dimension.

This is automatically done if no permutation is explicitly specified.

source

10.6 Lefschetz Helper Functions

ConleyDynamics.lefschetz_gfp_conversion – Function.

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/lefschetz_subcomplex.jl#L3-L8
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/lefschetz_subcomplex.jl#L37-L42
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/lefschetz_closed_subcomplex.jl#L3-L8
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/lefschetz_closed_subcomplex.jl#L34-L39
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/permute_lefschetz_complex.jl#L3-L16

CHAPTER 10. LEFSCHETZ COMPLEX FUNCTIONS 121

lcgfp = lefschetz_gfp_conversion(lc::LefschetzComplex, p::Int)

Convert a Lefschetz complex to the same complex over a finite field.

It is expected that the boundary matrix of the given Lefschetz complex lc is defined over the rationals,

and that the target characteristic p is a prime.

source

ConleyDynamics.lefschetz_filtration – Function.

lefschetz_filtration(lc::LefschetzComplex, fvalues::Vector{Int})

Compute a filtration on a Lefschetz subset.

The considered Lefschetz complex is given in lc. The vector fvalues assigns an integer between 0 and N

to every cell in lc. For every k the complex L_k is given by the closure of all cells with values between 1

and k. The function returns the following variables:

• lcsub: The subcomplex L_N

• fvalsub: The filtration on the subcomplex with values 1,...,N

Example

julia> labels = ["A","B","C","D","E","F","G"];

julia> simplices = [["A","B","D"],["B","D","E"],["B","C","E"],["C","E","F"],["F","G"]];

julia> sc = create_simplicial_complex(labels,simplices);

julia> filtration = [0,0,0,0,0,0,0,1,1,0,1,2,0,4,2,4,0,5,3,7,6];

julia> lcsub, fvalsub = lefschetz_filtration(sc,filtration);

julia> phinf, phint = persistent_homology(lcsub,fvalsub);

julia> phinf

3-element Vector{Vector{Int64}}:

[1]

[]

[]

julia> phint

3-element Vector{Vector{Tuple{Int64, Int64}}}:

[]

[(1, 5), (2, 7), (4, 6)]

[]

source

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/lefschetz_gfp_conversion.jl#L3-L11
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/lefschetz_filtration.jl#L3-L41

CHAPTER 10. LEFSCHETZ COMPLEX FUNCTIONS 122

lefschetz_filtration(lc::LefschetzComplex, strfilt::Vector{Vector{String}})

Compute a filtration on a Lefschetz subset.

The considered Lefschetz complex is given in lc. The vector of string vectors strfilt contains the nec-

essary simplices to build the filtration. The list strfilt[k] contains the simplices that are added at the

k-th step, together with their closures. Thus, for every k the complex L_k is given by the closure of all cells

listed in strfilt[i] for i between 1 and k. The function returns the following variables:

• lcsub: The subcomplex L_N, where N = length(strfilt)

• fvalsub: The filtration on the subcomplex with values 1,...,N

Example

julia> labels = ["A","B","C","D","E","F","G"];

julia> simplices = [["A","B","D"],["B","D","E"],["B","C","E"],["C","E","F"],["F","G"]];

julia> sc = create_simplicial_complex(labels,simplices);

julia> strfiltration =

[["AB","AD","BD"],["BE","DE"],["BCE"],["CF","EF"],["ABD"],["CEF"],["BDE"]];↪→

julia> lcsub, fvalsub = lefschetz_filtration(sc, strfiltration);

julia> phinf, phint = persistent_homology(lcsub,fvalsub);

julia> phinf

3-element Vector{Vector{Int64}}:

[1]

[]

[]

julia> phint

3-element Vector{Vector{Tuple{Int64, Int64}}}:

[]

[(1, 5), (2, 7), (4, 6)]

[]

source

10.7 Cell Subset Helper Functions

ConleyDynamics.convert_cells – Function.

convert_cells(lc::LefschetzComplex, cl::Vector{Int})

Convert cell list cl in the Lefschetz complex lc from index form to label form.

source

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/lefschetz_filtration.jl#L85-L125
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/convert_cells.jl#L3-L8

CHAPTER 10. LEFSCHETZ COMPLEX FUNCTIONS 123

convert_cells(lc::LefschetzComplex, cl::Vector{String})

Convert cell list cl in the Lefschetz complex lc from label form to index form.

source

ConleyDynamics.convert_cellsubsets – Function.

convert_cellsubsets(lc::LefschetzComplex, clsub::Vector{Vector{Int}})

Convert CellSubsets clsub in the Lefschetz complex lc from index form to label form.

source

convert_cellsubsets(lc::LefschetzComplex, clsub::Vector{Vector{String}})

Convert CellSubsets clsub in the Lefschetz complex lc from label form to index form.

source

10.8 Coordinate Helper Functions

ConleyDynamics.convert_planar_coordinates – Function.

convert_planar_coordinates(coords::Vector{Vector{Float64}},

p0::Vector{Float64},

p1::Vector{Float64})

Convert a given collection of planar coordinates.

The vector coords contains pairs of coordinates, which are then transformed to fit into the box with vertices

p0 = (p0x,p0y) and p1 = (p1x,p1y). It is assumed that p0 denotes the lower left box corner, while p1

is the upper right corner. The function shifts and scales the coordinates in such a way that every side of

the box contains at least one point. Upon completion, it returns a new coordinate vector coordsNew.

More precisely, if the x-coordinates are spanning the interval [xmin,xmax] and the y-coordinates span

[ymin,ymax], then the point (x,y) is transformed to (xn,yn) with:

• xn = p0x + (p1x-p0x) * (x-cxmin) / (cxmax-cxmin)

• yn = p0y + (p1y-p0y) * (y-cymin) / (cymax-cymin)

source

ConleyDynamics.convert_spatial_coordinates – Function.

convert_spatial_coordinates(coords::Vector{Vector{Float64}},

p0::Vector{Float64},

p1::Vector{Float64})

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/convert_cells.jl#L17-L22
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/convert_cells.jl#L31-L36
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/convert_cells.jl#L54-L59
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/convert_coordinates.jl#L3-L24

CHAPTER 10. LEFSCHETZ COMPLEX FUNCTIONS 124

Convert a given collection of spatial coordinates.

The vector coords contains triples of coordinates, which are then transformed to fit into the box with

vertices p0 = (p0x,p0y,p0z) and p1 = (p1x,p1y,p1z). It is assumed that each coordinate of p0 is strictly

smaller than the corresponding coordinate of p1. The function shifts and scales the coordinates in such a

way that every side of the box contains at least one point. Upon completion, it returns a new coordinate

vector coordsNew.

More precisely, if the x-coordinates are spanning the interval [xmin,xmax], the y-coordinates span [ymin,ymax],

and the z-coordinates span [zmin,zmax], then the point (x,y,z) is transformed to (xn,yn,zn) with:

• xn = p0x + (p1x-p0x) * (x-cxmin) / (cxmax-cxmin)

• yn = p0y + (p1y-p0y) * (y-cymin) / (cymax-cymin)

• zn = p0z + (p1z-p0z) * (z-czmin) / (czmax-czmin)

source

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/lefschetz/convert_coordinates.jl#L52-L75

Chapter 11

Homology Functions

11.1 Regular Homology

ConleyDynamics.homology – Function.

homology(lc::LefschetzComplex)

Compute the homology of a Lefschetz complex.

The homology is returned as a vector betti of Betti numbers, where betti[k] is the Betti number in

dimension k-1. The computations are performed over the field associated with the Lefschetz complex

boundary matrix.

source

ConleyDynamics.relative_homology – Function.

relative_homology(lc::LefschetzComplex,subc::Cells)

Compute the relative homology of a Lefschetz complex with respect to a subcomplex. The computation is

performed over the field associated with the Lefschetz boundary matrix.

The subcomplex is the closure of the cells in subc, which can be given either as indices or labels. The

homology is returned as a vector betti of Betti numbers, where betti[k] is the Betti number in dimension

k-1.

source

relative_homology(lc::LefschetzComplex,subc::Cells,subc0::Cells)

Compute the relative homology of a Lefschetz complex with respect to a subcomplex. The computation is

performed over the field associated with the Lefschetz boundary matrix.

In this implementation, relative homology of the pair cl(subc), cl(subc0)) is computed. An error is

raised if cl(subc0) is not a subset of cl(subc). The homology is returned as a vector betti of Betti

numbers, where betti[k] is the Betti number in dimension k-1.

source

125

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/homology/homology.jl#L3-L12
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/homology/relative_homology.jl#L3-L14
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/homology/relative_homology.jl#L82-L94

CHAPTER 11. HOMOLOGY FUNCTIONS 126

11.2 Persistent Homology

ConleyDynamics.persistent_homology – Function.

persistent_homology(lc::LefschetzComplex, filtration::Vector{Int})

Complete the persistent homology of a Lefschetz complex filtration over the field associated with the

Lefschetz complex boundary matrix.

The function returns the two values

• phsingles::Vector{Vector{Int}}

• phpairs::Vector{Vector{Tuple{Int,Int}}}

It assumes that the order given by the filtration values is admissible, i.e., the permuted boundary matrix

is strictly upper triangular. The function returns the starting filtration values for infinite length persistence

intervals in phsingles, and the birth- and death-filtration values for finite length persistence intervals in

phpairs.

source

11.3 Reduction Algorithm

ConleyDynamics.ph_reduce! – Function.

ph_reduce!(matrix::SparseMatrix; [returnbasis=true])

Apply the persistence reduction algorithm to the matrix.

The function returns the values

• phsingles::Vector{Vector{Int}}

• phpairs::Vector{Vector{Tuple{Int,Int}}}

• basis::SparseMatrix (if returnbasis=true)

It assumes that matrix is strictly upper triangular. The function returns the starting columns for infinite

length persistence intervals in phsingles, and the birth- and death-columns for finite length persistence

intervals in phpairs. If the optional argument returnbasis=true is given, then the function also returns

the computed basis matrix B with reduced = matrix * B.

source

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/homology/persistent_homology.jl#L3-L17
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/homology/ph_reduce.jl#L3-L19

Chapter 12

Conley Theory Functions

12.1 Multivector Fields

ConleyDynamics.mvf_information – Function.

mvf_information(lc::LefschetzComplex, mvf::CellSubsets)

Extract basic information about a multivector field.

The input argument lc contains the Lefschetz complex, and mvf describes the multivector field. The

function returns the information in the form of a Dict{String,Any}. You can use the command keys to

see the keyset of the return dictionary:

• "N mv": Number of multivectors

• "N critical": Number of critcal multivectors

• "N regular": Number of regular multivectors

• "Lengths critical": Length distribution of critical multivectors

• "Lengths regular": Length distribution of regular multivectors

In the last two cases, the dictionary entries are vectors of pairs (length,frequency), where each pair

indicates that there are frequency multivectors of length length.

source

ConleyDynamics.create_mvf_hull – Function.

create_mvf_hull(lc::LefschetzComplex, mvfbase::Vector{Vector{Int}})

Create the smallest multivector field containing the given sets.

The resulting multivector field has the property that every set of the form mvfbase[k] is contained in a

minimal multivector. Notice that these sets do not have to be disjoint, and that not even their locally closed

hulls have to be disjoint. In the latter case, this leads to two such sets having to be contained in the same

multivector. If the sets in mvfbase are poorly chosen, one might end up with extremely large multivectors

due to the above potential merging of locally closed hulls.

source

127

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/mvf/mvf_information.jl#L3-L20
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/mvf/create_mvf_hull.jl#L3-L16

CHAPTER 12. CONLEY THEORY FUNCTIONS 128

create_mvf_hull(lc::LefschetzComplex, mvfbase::Vector{Vector{String}})

Create the smallest multivector field containing the given sets.

The resulting multivector field has the property that every set of the form mvfbase[k] is contained in a

minimal multivector. Notice that these sets do not have to be disjoint, and that not even their locally closed

hulls have to be disjoint. In the latter case, this leads to two such sets having to be contained in the same

multivector. If the sets in mvfbase are poorly chosen, one might end up with extremely large multivectors

due to the above potential merging of locally closed hulls.

source

ConleyDynamics.create_planar_mvf – Function.

create_planar_mvf(lc::LefschetzComplex, coords::Vector{Vector{Float64}}, vf)

Create a planar multivector field from a regular vector field.

The function expects a planar Lefschetz complex lc and a coordinate vector coords of coordinates for all

the 0-dimensional cells in the complex. Moreover, the underlying vector field is specified by the function

vf(z::Vector{Float64})::Vector{Float64}, where both the input and output vectors have length two.

The function create_planar_mvf returns a multivector field mvf on lc, which can then be further analyzed

using for example the function connection_matrix.

The input data lc and coords can be generated using one of the following methods:

• create_cubical_rectangle

• create_simplicial_rectangle

• create_simplicial_delaunay

In each case, the provided coordinate vector can be transformed to the correct bounding box values using

the conversion function convert_planar_coordinates.

Example 1

Suppose we define a sample vector field using the commands

function samplevf(x::Vector{Float64})

#

Sample vector field with nontrivial Morse decomposition

#

x1, x2 = x

y1 = x1 * (1.0 - x1*x1 - 3.0*x2*x2)

y2 = x2 * (1.0 - 3.0*x1*x1 - x2*x2)

return [y1, y2]

end

One first creates a triangulation of the enclosing box, which in this case is given by [-2,2] x [-2,2] using

the commands

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/mvf/create_mvf_hull.jl#L79-L92

CHAPTER 12. CONLEY THEORY FUNCTIONS 129

n = 21

lc, coords = create_simplicial_rectangle(n,n);

coordsN = convert_planar_coordinates(coords,[-2.0,-2.0],[2.0,2.0]);

The multivector field is then generated using

mvf = create_planar_mvf(lc,coordsN,samplevf);

and the commands

cm = connection_matrix(lc, mvf);

cm.conley

full_from_sparse(cm.matrix)

finally show that this vector field gives rise to a Morse decomposition with nine Morse sets, and twelve

connecting orbits. Using the commands

fname = "morse_test.pdf"

plot_planar_simplicial_morse(lc, coordsN, fname, cm.morse, pv=true)

these Morse sets can be visualized. The image will be saved in fname.

Example 2

An example with periodic orbits can be generated using the vector field

function samplevf2(x::Vector{Float64})

#

Sample vector field with nontrivial Morse decomposition

#

x1, x2 = x

c0 = x1*x1 + x2*x2

c1 = (c0 - 4.0) * (c0 - 1.0)

y1 = -x2 + x1 * c1

y2 = x1 + x2 * c1

return [-y1, -y2]

end

The Morse decomposition can now be computed via

n2 = 51

lc2, coords2 = create_cubical_rectangle(n2,n2);

coords2N = convert_planar_coordinates(coords2,[-4.0,-4.0],[4.0,4.0]);

mvf2 = create_planar_mvf(lc2,coords2N,samplevf2);

cm2 = connection_matrix(lc2, mvf2);

cm2.conley

cm2.poset

full_from_sparse(cm2.matrix)

fname2 = "morse_test2.pdf"

plot_planar_cubical_morse(lc2, fname2, cm2.morse, pv=true)

CHAPTER 12. CONLEY THEORY FUNCTIONS 130

In this case, one obtains three Morse sets: One is a stable equilibrium, one is an unstable periodic orbit,

and the last is a stable periodic orbit.

source

ConleyDynamics.create_spatial_mvf – Function.

create_spatial_mvf(lc::LefschetzComplex, coords::Vector{Vector{Float64}}, vf)

Create a spatial multivector field from a regular vector field.

The function expects a three-dimensional Lefschetz complex lc and a coordinate vector coords of coordi-

nates for all the 0-dimensional cells in the complex. Moreover, the underlying vector field is specified by

the function vf(z::Vector{Float64})::Vector{Float64}, where both the input and output vectors have

length three. The function create_spatial_mvf returns a multivector field mvf on lc, which can then be

further analyzed using for example the function connection_matrix.

The input data lc and coords has to be of one of the following two types:

• lc is a tetrahedral mesh of a region in three dimensions. In other words, the underlying Lefschetz

complex is in fact a simplicial complex, and the vector coords contains the vertex coordinates.

• lc is a three-dimensional cubical complex, i.e., it is the closure of a collection of three-dimensional

cubes in space. The vertex coordinates can be slightly perturbed from the original position in the

cubical lattice, as long as the overall structure of the complex stays intact. In that case, the faces

are interpreted as Bezier surfaces with straight edges.

Example 1

Suppose we define a sample vector field using the commands

function samplevf(x::Vector{Float64})

#

Sample vector field with nontrivial Morse decomposition

#

x1, x2, x3 = x

y1 = x1 * (1.0 - x1*x1)

y2 = -x2

y3 = -x3

return [y1, y2, y3]

end

One first creates a cubical complex covering the interesting dynamics, say the trapping region [-1.5,1.5]

x [-1,1] x [-1,1], using the commands

lc, coords = create_cubical_box(3,3,3);

coordsN = convert_spatial_coordinates(coords,[-1.5,-1.0,-1.0],[1.5,1.0,1.0]);

The multivector field is then generated using

mvf = create_spatial_mvf(lc,coordsN,samplevf);

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/mvf/create_planar_mvf.jl#L3-L113

CHAPTER 12. CONLEY THEORY FUNCTIONS 131

and the commands

cm = connection_matrix(lc, mvf);

cm.conley

full_from_sparse(cm.matrix)

finally show that this vector field gives rise to a Morse decomposition with three Morse sets, and two

connecting orbits.

source

ConleyDynamics.extract_multivectors – Function.

extract_multivectors(lc::LefschetzComplex, mvf::Vector{Vector{Int}},

scells::Vector{Int})

Extract all multivectors containing a provided selection of cells.

The function returns all multivectors which contain at least one of the cells in the input vector scells. The

return argument has type Vector{Vector{Int}}.

source

extract_multivectors(lc::LefschetzComplex, mvf::Vector{Vector{String}},

scells::Vector{String})

Extract all multivectors containing a provided selection of cells.

The function returns all multivectors which contain at least one of the cells in the input vector scells. The

return argument has type Vector{Vector{String}}.

source

ConleyDynamics.planar_nontransverse_edges – Function.

planar_nontransverse_edges(lc::LefschetzComplex, coords::Vector{Vector{Float64}}, vf;

npts::Int=100)

Find all edges of a planar Lefschetz complex which are not flow transverse.

The Lefschetz complex is given in lc, the coordinates of all vertices of the complex in coords, and the

vector field is specified in vf. The optional parameter npts determines how many points along an edge are

evaluated for the transversality check. The function returns a list of nontransverse edges as Vector{Int},

which contains the edge indices.

source

12.2 Conley Index Computations

ConleyDynamics.isoinvset_information – Function.

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/mvf/create_spatial_mvf.jl#L3-L71
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/mvf/extract_multivectors.jl#L3-L11
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/mvf/extract_multivectors.jl#L44-L52
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/mvf/planar_nontransverse_edges.jl#L3-L14

CHAPTER 12. CONLEY THEORY FUNCTIONS 132

isoinvset_information(lc::LefschetzComplex, mvf::CellSubsets, iis::Cells)

Compute basic information about an isolated invariant set.

The input argument lc contains the Lefschetz complex, and mvf describes the multivector field. The

isolated invariant set is specified in the argument iis. The function returns the information in the form of

a Dict{String,Any}. The command keys can be used to see the keyset of the return dictionary. These

describe the following information:

• "Conley index" contains the Conley index of the isolated invariant set.

• "N multivectors" contains the number of multivectors in the isolated invariant set.

source

ConleyDynamics.conley_index – Function.

conley_index(lc::LefschetzComplex, subcomp::Vector{String})

Determine the Conley index of a Lefschetz complex subset.

The function raises an error if the subset subcomp is not locally closed. The computations are performed

over the field associated with the Lefschetz complex boundary matrix.

source

conley_index(lc::LefschetzComplex, subcomp::Vector{Int})

Determine the Conley index of a Lefschetz complex subset.

The function raises an error if the subset subcomp is not locally closed. The computations are performed

over the field associated with the Lefschetz complex boundary matrix.

source

ConleyDynamics.morse_sets – Function.

morse_sets(lc::LefschetzComplex, mvf::CellSubsets; poset::Bool=false)

Find the nontrivial Morse sets of a multivector field on a Lefschetz complex.

The input argument lc contains the Lefschetz complex, and mvf describes the multivector field. The

function returns the nontrivial Morse sets as a Vector{Vector{Int}}. If the optional argument poset=true

is added, then the function returns both the Morse sets and the adjacency matrix of the Hasse diagram of

the underlying poset.

source

ConleyDynamics.morse_interval – Function.

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/conley/isoinvset_information.jl#L3-L17
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/conley/conley_index.jl#L3-L11
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/conley/conley_index.jl#L44-L52
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/conley/morse_sets.jl#L3-L13

CHAPTER 12. CONLEY THEORY FUNCTIONS 133

morse_interval(lc::LefschetzComplex, mvf::CellSubsets,

ms::CellSubsets)

Find the isolated invariant set for a Morse set interval.

The input argument lc contains the Lefschetz complex, and mvf describes the multivector field. The

collection of Morse sets are contained inms. All of these sets should be Morse sets in the sense of being

strongly connected components of the flow graph. (Nevertheless, this will be enforced in the function!) In

other words, the sets in ms should be determined using the function morse_sets!

The function returns the smallest isolated invariant set which contains the Morse sets and their connections

as a Vector{Int}.

source

ConleyDynamics.restrict_dynamics – Function.

restrict_dynamics(lc::LefschetzComplex, mvf::CellSubsets, lcsub::Cells)

Restrict a multivector field to a Lefschetz subcomplex.

For a given multivector field mvf on a Lefschetz complex lc, and a subcomplex which is given by the locally

closed set represented by lcsub, create the associated Lefschetz subcomplex lcreduced and the induced

multivector field mvfreduced on the subcomplex. The multivectors of the new multivector field are the

intersections of the original multivectors and the subcomplex.

source

ConleyDynamics.remove_exit_set – Function.

remove_exit_set(lc::LefschetzComplex, mvf::CellSubsets)

Exit set removal for a multivector field on a Lefschetz subcomplex.

It is assumed that the Lefschetz complex lc is a topological manifold and that mvf contains a multivector

field that is created via either create_planar_mvf or create_spatial_mvf. The function identifies cells

on the boundary at which the flows exits the region covered by the Lefschetz complex. If this exit set is

closed, we have found an isolated invariant set and the function returns a Lefschetz complex lcr restricted

to it, as well as the restricted multivector field mvfr. If the exit set is not closed, a warning is displayed

and the function returns the restricted Lefschetz complex and multivector field obtained by removing the

closure of the exit set. In the latter case, unexpected results might be obtained.

source

12.3 Connection Matrix Computation

ConleyDynamics.connection_matrix – Function.

connection_matrix(lc::LefschetzComplex, mvf::CellSubsets;

[returnbasis::Bool])

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/conley/morse_interval.jl#L3-L18
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/conley/restrict_dynamics.jl#L3-L13
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/conley/remove_exit_set.jl#L3-L19

CHAPTER 12. CONLEY THEORY FUNCTIONS 134

Compute a connection matrix for the multivector field mvf on the Lefschetz complex lc over the field

associated with the Lefschetz complex boundary matrix.

The function returns an object of type ConleyMorseCM. If the optional argument returnbasis::Bool=true

is given, then the function also returns a dictionary which gives the basis for the connection matrix columns

in terms of the original labels.

source

ConleyDynamics.cm_reduce! – Function.

cm_reduce!(matrix::SparseMatrix, psetvec::Vector{Int};

[returnbasis::Bool],[returntm::Bool])

Compute the connection matrix.

Assumes that matrix is upper triangular and filtered according to psetvec. Modifies the argument matrix.

Return values:

• cmatrix: Connection matrix

• cmatrix_cols: Columns of the connection matrix in the boundary

• basisvecs (optional): If the argument returnbasis=true is given, this returns information about the

computed basis. The k-th entry of basisvecs is a vector containing the columns making up the k-th

basis vector, which corresponds to column cmatrix_cols[k].

• tmatrix (optional): If the argument returntm=true is given in addition to returnbasis=true, then

instead of basisvecs the function returns the complete transformationmatrix. In this case, basicvecs

is not returned.

source

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/conley/connection_matrix.jl#L3-L15
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/conley/cm_reduce.jl#L3-L23

Chapter 13

Example Functions

13.1 Examples from Batko et al.

ConleyDynamics.example_forman1d – Function.

lc, mvf, coords = example_forman1d()

Create the simplicial complex and multivector field for the example from Figure 1 in the FoCM 2020 paper

by Batko, Kaczynski, Mrozek, and Wanner.

The function returns the Lefschetz complex lc and the multivector field mvf. If desired for plotting, the

third return value coords gives a vector of coordinates for the vertices. The Lefschetz complex is defined

over the finite field GF(2).

Examples

julia> lc, mvf = example_forman1d();

julia> cm = connection_matrix(lc, mvf);

julia> sparse_show(cm.matrix)

[0 0 0 0 1]

[0 0 0 0 0]

[0 0 0 0 1]

[0 0 0 0 0]

[0 0 0 0 0]

julia> print(cm.labels)

["A", "AD", "F", "BF", "DE"]

source

ConleyDynamics.example_forman2d – Function.

lc, mvf, coords = example_forman2d()

Create the simplicial complex and multivector field for the example from Figure 3 in the FoCM 2020 paper

by Batko, Kaczynski, Mrozek, and Wanner.

135

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/examples/example_forman1d.jl#L3-L32

CHAPTER 13. EXAMPLE FUNCTIONS 136

The function returns the Lefschetz complex lc over the finite field GF(2) and the multivector field mvf. If

desired for plotting, the third return value coords gives a vector of coordinates for the vertices.

Examples

julia> lc, mvf = example_forman2d();

julia> cm = connection_matrix(lc, mvf);

julia> sparse_show(cm.matrix)

[0 0 0 0 1 0 1 0 0]

[0 0 0 0 0 1 0 0 0]

[0 0 0 0 1 1 1 0 0]

[0 0 0 0 0 0 0 0 1]

[0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0]

julia> print(cm.labels)

["D", "E", "F", "GJ", "BF", "EF", "HI", "ADE", "FGJ"]

source

13.2 Examples from Mrozek & Wanner

ConleyDynamics.example_julia_logo – Function.

lc, mvf = example_julia_logo()

Create the simplicial complex and multivector field for the example from Figure 1 in the connection matrix

paper by Mrozek & Wanner.

The function returns the Lefschetz complex lc over GF(2) and the multivector field mvf.

Examples

julia> lc, mvf = example_julia_logo();

julia> cm = connection_matrix(lc, mvf);

julia> sparse_show(cm.matrix)

[0 0 0]

[0 0 1]

[0 0 0]

julia> print(cm.labels)

["D", "AC", "ABC"]

source

ConleyDynamics.example_three_cm – Function.

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/examples/example_forman2d.jl#L3-L35
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/examples/example_julia_logo.jl#L3-L27

CHAPTER 13. EXAMPLE FUNCTIONS 137

lc, mvf, coords = example_three_cm(mvftype)

Create the simplicial complex and multivector field for the example from Figure 2 in the connection matrix

paper by Mrozek & Wanner.

Depending on the value of mvftype, return the periodic orbit (0=default) or one of the three gradient

(1,2,3) examples.

The function returns the Lefschetz complex lc over the rational field and the multivector field mvf. If

desired for plotting, the third return value coords gives a vector of coordinates for the vertices.

Examples

julia> lc, mvf = example_three_cm(0);

julia> cm = connection_matrix(lc, mvf);

julia> print(cm.labels)

["A", "C", "CE", "AC", "BD", "DF", "ABC", "EFG"]

julia> full_from_sparse(cm.matrix)

8×8 Matrix{Rational{Int64}}:

0 0 0 -1 -1 0 0 0

0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 -1 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

source

ConleyDynamics.example_multiflow – Function.

lc, mvf = example_multiflow()

Create the Lefschetz complex and multivector field for the example from Figure 3 in the connection matrix

paper by Mrozek & Wanner.

The function returns the Lefschetz complex lc over GF(2) and the multivector field mvf.

Examples

julia> lc, mvf = example_multiflow();

julia> cm = connection_matrix(lc, mvf);

julia> sparse_show(cm.matrix)

[0 0 0 0]

[0 0 0 0]

[0 0 0 0]

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/examples/example_three_cm.jl#L3-L36

CHAPTER 13. EXAMPLE FUNCTIONS 138

[0 0 0 0]

julia> print(cm.labels)

["BD", "DF", "AC", "CE"]

source

ConleyDynamics.example_small_periodicity – Function.

lc1, lc2, mvf = example_small_periodicity()

Create two representations of the Lefschetz complex and the multivector field for the example from Figure

4 in the connection matrix paper by Mrozek & Wanner.

The complexes lc1 and lc2 are just two representations of the same complex, but they lead to different

connection matrices. Both Lefschetz complexes are defined over the finite field GF(2).

The function returns the Lefschetz complexes lc1 and lc2, as well as the multivector field mvf.

Examples

julia> lc1, lc2, mvf = example_small_periodicity();

julia> cm1 = connection_matrix(lc1, mvf);

julia> cm2 = connection_matrix(lc2, mvf);

julia> full_from_sparse(cm1.matrix)

4×4 Matrix{Int64}:

0 0 0 0

0 0 0 1

0 0 0 1

0 0 0 0

julia> print(cm1.labels)

["A", "a", "b", "alpha"]

julia> full_from_sparse(cm2.matrix)

4×4 Matrix{Int64}:

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

julia> print(cm2.labels)

["A", "c", "b", "alpha"]

source

ConleyDynamics.example_subdivision – Function.

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/examples/example_multiflow.jl#L3-L27
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/examples/example_small_periodicity.jl#L3-L46

CHAPTER 13. EXAMPLE FUNCTIONS 139

lc, mvf = example_subdivision(mvftype)

Create the Lefschetz complex and multivector field for the example from Figure 11 in the connection matrix

paper by Mrozek & Wanner.

Depending on the value of mvftype, return the multivector (0=default) or one of the two combinatorial

vector field (1,2) examples.

The function returns the Lefschetz complex lc over the rationals and the multivector field mvf.

Examples

julia> lc, mvf = example_subdivision(1);

julia> cm = connection_matrix(lc, mvf);

julia> full_from_sparse(cm.matrix)

5×5 Matrix{Rational{Int64}}:

0 0 -1 -1 -1

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

source

13.3 General Examples

ConleyDynamics.example_critical_simplex – Function.

lc, mvf = example_critical_simplex(dim)

Create a simplicial complex of dimension dim as well as a multivector field on it in which every cell is

critical.

The function returns the Lefschetz complex lc over GF(2) and the multivector field mvf.

Examples

julia> lc, mvf = example_critical_simplex(2);

julia> cm = connection_matrix(lc, mvf);

julia> sparse_show(cm.matrix)

[0 0 0 1 1 0 0]

[0 0 0 1 0 1 0]

[0 0 0 0 1 1 0]

[0 0 0 0 0 0 1]

[0 0 0 0 0 0 1]

[0 0 0 0 0 0 1]

[0 0 0 0 0 0 0]

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/examples/example_subdivision.jl#L3-L29

CHAPTER 13. EXAMPLE FUNCTIONS 140

julia> print(cm.labels)

["A", "B", "C", "AB", "AC", "BC", "ABC"]

source

ConleyDynamics.example_moebius – Function.

lc1, mvf1, lc2, mvf2 = example_moebius(p)

Create two simplicial complexes for a cylinder and Moebius strip, respectively, together with associated

multivector fields on them.

The function returns the Lefschetz complexes lc1 and lc2, as well as the multivector fields mvf1 and mvf2.

Both complexes are over a field with characteristic p. Positive prime characteristic uses the finite field

GF(p), while zero characteristic gives the rationals.

The multivector field is the same, and it has one critical cell each in dimension 1 and 2 in the interior of

the strip. The boundary consists of two periodic orbits for lc1 and mvf1, and of one periodic orbit in the

Moebius case lc2 and mvf2. The latter case leads to different connection matrices for the fields GF(2) and

GF(7), for example.

Examples

julia> lc1, mvf1, lc2, mvf2 = example_moebius(0);

julia> lc2p2 = lefschetz_gfp_conversion(lc2,2);

julia> lc2p7 = lefschetz_gfp_conversion(lc2,7);

julia> cmp2 = connection_matrix(lc2p2, mvf2);

julia> cmp7 = connection_matrix(lc2p7, mvf2);

julia> sparse_show(cmp2.matrix)

[0 0 0 0]

[0 0 0 1]

[0 0 0 0]

[0 0 0 0]

julia> sparse_show(cmp7.matrix)

[0 0 0 0]

[0 0 0 1]

[0 0 0 2]

[0 0 0 0]

source

ConleyDynamics.example_nonunique – Function.

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/examples/example_critical_simplex.jl#L3-L30
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/examples/example_moebius.jl#L3-L47

CHAPTER 13. EXAMPLE FUNCTIONS 141

lc1, lc2, mvf, coords1, coords2 = example_nonunique()

Create two representations of a simplicial complex and one multivector field which illustrates nonunique

connection matrices.

The two complexes lc1 and lc2 represent the same simplicial complex over GF(2), but differ in the ordering

of the labels.

The function returns the Lefschetz complexes lc1 and lc2, as well as the multivector field mvf. If desired

for plotting, the fourth and fifth return values coords1 and coords2 give vectors of coordinates for the

vertices of the two complexes.

Examples

julia> lc1, lc2, mvf = example_nonunique();

julia> cm1 = connection_matrix(lc1, mvf);

julia> cm2 = connection_matrix(lc2, mvf);

julia> sparse_show(cm1.matrix)

[0 0 0 1 0 1 0 0 0]

[0 0 0 1 0 1 0 0 0]

[0 0 0 0 0 0 0 1 1]

[0 0 0 0 0 0 1 1 0]

[0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 1 1 0]

[0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0]

julia> print(cm1.labels)

["2", "7", "79", "29", "45", "67", "168", "349", "789"]

julia> sparse_show(cm2.matrix)

[0 0 0 1 0 1 0 0 0]

[0 0 0 1 0 1 0 0 0]

[0 0 0 0 0 0 1 0 1]

[0 0 0 0 0 0 1 1 0]

[0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 1 1 0]

[0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0]

julia> print(cm2.labels)

["2", "8", "78", "29", "45", "67", "168", "349", "789"]

source

ConleyDynamics.example_clorenz – Function.

lc, mvf = example_clorenz()

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/examples/example_nonunique.jl#L3-L52

CHAPTER 13. EXAMPLE FUNCTIONS 142

Create the simplicial complex and multivector field for the example from Figure 3 in the JCD 2016 paper

by Kaczynski, Mrozek, and Wanner.

The function returns the Lefschetz complex lc over the finite field GF(2) and the multivector field mvf.

Examples

julia> lc, mvf = example_clorenz();

julia> cm = connection_matrix(lc, mvf);

julia> sparse_show(cm.matrix)

[0 0 0 0 1]

[0 0 0 0 0]

[0 0 0 0 1]

[0 0 0 0 0]

[0 0 0 0 0]

julia> print(cm.labels)

["i", "ip", "g", "gm", "bc"]

julia> ms, ps = morse_sets(lc, mvf, poset=true);

julia> [conley_index(lc, mset) for mset in ms]

4-element Vector{Vector{Int64}}:

[1, 1, 0]

[1, 1, 0]

[0, 1, 0]

[0, 0, 0]

julia> ps

4×4 Matrix{Bool}:

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 0

source

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/examples/example_clorenz.jl#L3-L45

Chapter 14

Plotting Functions

14.1 Visualizing Simplicial Complexes

ConleyDynamics.plot_planar_simplicial – Function.

plot_planar_simplicial(sc::LefschetzComplex,

coords::Vector{<:Vector{<:Real}},

fname::String;

[mvf::CellSubsets=Vector{Vector{Int}}([]),]

[labeldir::Vector{<:Real}=Vector{Int}([]),]

[labeldis::Real=8,]

[hfac::Real=1.2,]

[vfac::Real=1.2,]

[sfac::Real=0,]

[pdim::Vector{Bool}=[true,true,true],]

[pv::Bool=false])

Create an image of a planar simplicial complex, and if specified, a Forman vector field on it.

The vector coords contains coordinates for every one of the vertices of the simplicial complex sc. The

image will be saved in the file with name fname, and the ending determines the image type. Accepted are

.pdf, .svg, .png, and .eps.

If the optional mvf is specified and is a Forman vector field, then this Forman vector field is drawn as well.

The optional vector labeldir contains directions for the vertex labels, and labeldis the distance from

the vertex. The directions have to be reals between 0 and 4, with 0,1,2,3 corresponding to E,N,W,S. The

optional constants hfac and vfac contain the horizontal and vertical scale vectors, while sfac describes

a uniform scale. If sfac=0 the latter is automatically determined. The vector pdim specifies in which

dimensions cells are drawn; the default shows vertices, edges, and triangles. Finally if one passes the

argument pv=true, then in addition to saving the file a preview is displayed.

Examples

Suppose we have created a simplicial complex using the commands

sc, coords = create_simplicial_delaunay(300, 300, 30, 20)

fname = "sc_plot_test.pdf"

Then the following code creates an image of the simplicial complex without labels, but with a preview:

143

CHAPTER 14. PLOTTING FUNCTIONS 144

plot_planar_simplicial(sc, coords, fname, pv=true)

If we want to see the labels, we can use

ldir = fill(0.5, sc.ncells);

plot_planar_simplicial(sc, coords, fname, labeldir=ldir, labeldis=10, pv=true)

This command puts all labels in the North-East direction at a distance of 10.

source

ConleyDynamics.plot_planar_simplicial_morse – Function.

plot_planar_simplicial_morse(sc::LefschetzComplex,

coords::Vector{<:Vector{<:Real}},

fname::String,

morsesets::CellSubsets;

[hfac::Real=1.2,]

[vfac::Real=1.2,]

[sfac::Real=0,]

[pdim::Vector{Bool}=[false,true,true],]

[pv::Bool=false])

Create an image of a planar simplicial complex, together with Morse sets, or also selected multivectors.

The vector coords contains coordinates for every one of the vertices of the simplicial complex sc. The

image will be saved in the file with name fname, and the ending determines the image type. Accepted are

.pdf, .svg, .png, and .eps.

The vector morsesets contains a list of Morse sets, or more general, subsets of the simplicial complex. For

every k, the set described by morsesets[k] will be shown in a distinct color.

The optional constants hfac and vfac contain the horizontal and vertical scale vectors for the margins,

while sfac describes a uniform scale. If sfac=0 the latter is automatically determined. The vector pdim

specifies in which dimensions cells are drawn; the default only shows edges and triangles. Finally if one

passes the argument pv=true, then in addition to saving the file a preview is displayed.

source

14.2 Visualizing Cubical Complexes

ConleyDynamics.plot_planar_cubical – Function.

plot_planar_cubical(cc::LefschetzComplex,

coords::Vector{<:Vector{<:Real}},

fname::String;

[hfac::Real=1.2,]

[vfac::Real=1.2,]

[cubefac::Real=0,]

[pdim::Vector{Bool}=[true,true,true],]

[pv::Bool=false])

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/plots/plot_planar_simplicial.jl#L3-L61
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/plots/plot_planar_simplicial_morse.jl#L3-L32

CHAPTER 14. PLOTTING FUNCTIONS 145

Create an image of a planar cubical complex.

The vector coords contains coordinates for every one of the vertices of the cubical complex cc. The image

will be saved in the file with name fname, and the ending determines the image type. Accepted are .pdf,

.svg, .png, and .eps. The optional constants hfac and vfac contain the horizontal and vertical scale

vectors. The optional argument cubefac specifies the side length of an elementary cube for plotting, and

it will be automatically determined otherwise. The vector pdim specifies which cell dimensions should be

plotted, with pdim[k] representing dimension k-1. Finally if one passes the argument pv=true, then in

addition to saving the file a preview is displayed.

Examples

Suppose we have created a cubical complex using the commands

cubes = ["00.11", "01.01", "02.10", "11.10", "11.01", "22.00"]

coords = [[0,0],[0,1],[0,2],[1,0],[1,1],[1,2],[2,1],[2,2]]

cc = create_cubical_complex(cubes)

fname = "cc_plot_test.pdf"

Then the following code creates an image of the simplicial complex without labels, but with a preview:

plot_planar_cubical(cc, coords, fname, pv=true)

If one only wants to plot the edges in the complex, but not the vertices or rectangles, then one can use:

plot_planar_cubical(cc, coords, fname, pv=true, pdim=[false,true,false])

source

plot_planar_cubical(cc::LefschetzComplex,

fname::String;

[hfac::Real=1.2,]

[vfac::Real=1.2,]

[cubefac::Real=0,]

[pdim::Vector{Bool}=[true,true,true],]

[pv::Bool=false])

Create an image of a planar cubical complex.

This is an alternative method which does not require the specification of the vertex coordinates. They will

be taken from the cube vertex labels.

source

ConleyDynamics.plot_planar_cubical_morse – Function.

plot_planar_cubical_morse(cc::LefschetzComplex,

coords::Vector{<:Vector{<:Real}},

fname::String,

morsesets::CellSubsets;

[hfac::Real=1.2,]

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/plots/plot_planar_cubical.jl#L3-L51
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/plots/plot_planar_cubical.jl#L149-L162

CHAPTER 14. PLOTTING FUNCTIONS 146

[vfac::Real=1.2,]

[cubefac::Real=0,]

[pdim::Vector{Bool}=[false,true,true],]

[pv::Bool=false])

Create an image of a planar cubical complex, together with Morse sets, or also selected multivectors.

The vector coords contains coordinates for every one of the vertices of the cubical complex cc. The image

will be saved in the file with name fname, and the ending determines the image type. Accepted are .pdf,

.svg, .png, and .eps.

The vector morsesets contains a list of Morse sets, or more general, subsets of the cubical complex. For

every k, the set described by morsesets[k] will be shown in a distinct color.

The optional constants hfac and vfac contain the horizontal and vertical scale vectors for the margins,

while cubefac describes a uniform scale. If cubefac=0 the latter is automatically determined. The vector

pdim specifies in which dimensions cells are drawn; the default only shows edges and squares. Finally if

one passes the argument pv=true, then in addition to saving the file a preview is displayed.

source

plot_planar_cubical_morse(cc::LefschetzComplex,

fname::String,

morsesets::CellSubsets;

[hfac::Real=1.2,]

[vfac::Real=1.2,]

[cubefac::Real=0,]

[pdim::Vector{Bool}=[false,true,true],]

[pv::Bool=false])

Create an image of a planar cubical complex, together with Morse sets, or also selected multivectors.

This is an alternative method which does not require the specification of the vertex coordinates. They will

be taken from the cube vertex labels.

source

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/plots/plot_planar_cubical_morse.jl#L3-L32
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/plots/plot_planar_cubical_morse.jl#L167-L182

Chapter 15

Sparse Matrix Functions

15.1 Internal Sparse Matrix Representation

ConleyDynamics.SparseMatrix – Type.

SparseMatrix{T}

Composite data type for a sparse matrix with entries of type T.

The struct has the following fields:

• const nrow::Int: Number of rows

• const ncol::Int: Number of columns

• const char::Int: Characteristic of type T

• const zero::T: Number 0 of type T

• const one::T: Number 1 of type T

• entries::Vector{Vector{T}}: Matrix entries corresponding to columns

• columns::Vector{Vector{Int}}: column[k] points to nonzero entries in column k

• rows::Vector{Vector{Int}}: rows[k] points to nonzero entries in the k-th row

source

15.2 Access Functions

ConleyDynamics.sparse_get_entry – Function.

sparse_get_entry(matrix::SparseMatrix, ri::Int, ci::Int)

Get the sparse matrix entry at location (ri,ci).

source

Base.getindex – Method.

147

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/sparse/sparse_type.jl#L3-L17
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/sparse/sparse_access.jl#L5-L9

CHAPTER 15. SPARSE MATRIX FUNCTIONS 148

Base.getindex(matrix::SparseMatrix, ri::Int, ci::Int)

Get the sparse matrix entry at location (ri,ci).

source

ConleyDynamics.sparse_set_entry! – Function.

sparse_set_entry!(matrix::SparseMatrix, ri::Int, ci::Int, val)

Set the sparse matrix entry at location (ri,ci) to val.

source

Base.setindex! – Method.

Base.setindex!(matrix::SparseMatrix, val, ri::Int, ci::Int)

Set the sparse matrix entry at location (ri,ci) to val.

source

ConleyDynamics.sparse_get_column – Function.

sparse_get_column(matrix::SparseMatrix, ci::Int)

Get the ci-th column of the sparse matrix.

source

ConleyDynamics.sparse_get_nz_column – Function.

sparse_get_nz_column(matrix::SparseMatrix, ci::Int)

Get the row indices for the nonzero entries in the ci-th column of the sparse matrix.

source

ConleyDynamics.sparse_minor – Function.

smp = sparse_minor(sm::SparseMatrix, rvec::Vector{Int}, cvec::Vector{Int})

Create sparse submatrix by specifying the desired row and column indices.

source

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/sparse/sparse_access.jl#L28-L32
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/sparse/sparse_access.jl#L37-L41
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/sparse/sparse_access.jl#L83-L87
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/sparse/sparse_access.jl#L93-L97
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/sparse/sparse_access.jl#L118-L123
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/sparse/sparse_minor.jl#L3-L7

CHAPTER 15. SPARSE MATRIX FUNCTIONS 149

15.3 Basic Functions

ConleyDynamics.sparse_size – Function.

sparse_size(matrix::SparseMatrix, dim::Int)

Number of rows (dim=1) or columns (dim=2) of a sparse matrix.

source

ConleyDynamics.sparse_low – Function.

sparse_low(matrix::SparseMatrix, col::Int)

Row index of the lowest nonzero matrix entry in column col.

source

ConleyDynamics.sparse_is_sut – Function.

bool = sparse_is_sut(sm::SparseMatrix)

Check whether the sparse matrix is strictly upper triangular.

source

ConleyDynamics.sparse_identity – Function.

sparse_identity(n::Int; p::Int=0)

Create a sparse identity matrix with n rows and columns.

The optional argument p specifies the field characteristic. If p=0 then the sparsematrix is over the rationals,

while if p>0 is a prime, then the matrix is an integer matrix whose entries are interpreted in GF(p).

source

ConleyDynamics.sparse_fullness – Function.

sparse_fullness(sm::SparseMatrix)

Display the fullness of the sparse matrix sm.

source

ConleyDynamics.sparse_sparsity – Function.

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/sparse/sparse_basic_functions.jl#L5-L9
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/sparse/sparse_basic_functions.jl#L24-L28
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/sparse/sparse_is_sut.jl#L3-L7
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/sparse/sparse_basic_functions.jl#L42-L51
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/sparse/sparse_basic_functions.jl#L79-L83

CHAPTER 15. SPARSE MATRIX FUNCTIONS 150

sparse_sparsity(sm::SparseMatrix)

Display the sparsity of the sparse matrix sm.

source

ConleyDynamics.sparse_show – Function.

sparse_show(sm::SparseMatrix)

Display the sparse matrix sm.

source

15.4 Elementary Matrix Operations

ConleyDynamics.sparse_add_column! – Function.

sparse_add_column!(matrix::SparseMatrix, ci1::Int, ci2::Int, cn, cd)

Replace column[ci1] by column[ci1] + (cn/cd) * column[ci2].

source

sparse_add_column!(matrix::SparseMatrix{Int}, ci1::Int, ci2::Int,

cn::Int, cd::Int)

Replace column[ci1] by column[ci1] + (cn/cd) * column[ci2].

The computation is performed mod p, where the characteristic is taken from matrix.char. An error is

thrown if matrix.char==0.

source

ConleyDynamics.sparse_add_row! – Function.

sparse_add_row!(matrix::SparseMatrix, ri1::Int, ri2::Int, cn, cd)

Replace row[ri1] by row[ri1] + (cn/cd) * row[ri2].

source

sparse_add_row!(matrix::SparseMatrix{Int}, ri1::Int, ri2::Int,

cn::Int, cd::Int)

Replace row[ri1] by row[ri1] + (cn/cd) * row[ri2].

The computation is performed mod p, where the characteristic is taken from matrix.char. An error is

thrown if matrix.char==0.

source

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/sparse/sparse_basic_functions.jl#L98-L102
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/sparse/sparse_basic_functions.jl#L111-L115
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/sparse/sparse_elementary_op.jl#L3-L7
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/sparse/sparse_elementary_op.jl#L28-L36
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/sparse/sparse_elementary_op.jl#L60-L64
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/sparse/sparse_elementary_op.jl#L83-L91

CHAPTER 15. SPARSE MATRIX FUNCTIONS 151

ConleyDynamics.sparse_permute – Function.

sparse_permute(sm::SparseMatrix, pr::Vector{Int}, pc::Vector{Int})

Create sparse matrix by permuting the row and column indices.

The vector pr describes the row permutation, and pc the column permutation.

source

ConleyDynamics.sparse_remove! – Function.

sparse_remove!(matrix::SparseMatrix, ri::Int, ci::Int)

Remove the sparse matrix entry at location (ri,ci).

source

ConleyDynamics.sparse_multiply – Function.

sparse_multiply(A::SparseMatrix, B::SparseMatrix)

Multiply two sparse matrices.

Exceptions are raised if the matrix product is not defined or the entry types do not match.

source

Base.:* – Method.

Base.:*(A::SparseMatrix, B::SparseMatrix)

Multiply two sparse matrices.

Exceptions are raised if the matrix product is not defined or the entry types do not match.

source

15.5 Conversion Functions

ConleyDynamics.sparse_from_full – Function.

sparse_from_full(matrix::Matrix{Int}; [p::Int=0])

Create sparse matrix from full integer matrix. If the optional argument p is specified and positive, then the

returned matrix is an integer matrix which is interpreted over GF(p). On the other hand, if p is omitted or

equal to zero, then the return matrix has rational type.

source

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/sparse/sparse_permute.jl#L3-L10
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/sparse/sparse_remove.jl#L3-L7
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/sparse/sparse_multiply.jl#L3-L10
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/sparse/sparse_multiply.jl#L60-L67
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/sparse/sparse_from_full.jl#L3-L11

CHAPTER 15. SPARSE MATRIX FUNCTIONS 152

ConleyDynamics.full_from_sparse – Function.

full_from_sparse(sm::SparseMatrix)

Create full matrix from sparse matrix.

source

ConleyDynamics.sparse_from_lists – Function.

sparse_from_lists(nr, nc, tchar, tzero, tone, r, c, v)

Create sparse matrix from lists describing the entries.

The vectors r, c, and v have to have the same length and the matrix has entry v[k] at (r[k],c[k]). Zero

entries will be ignored, and multiple entries for the same matrix position raise an error.

The input arguments have the following meaning:

• nr::Int: Number of rows

• nc::Int: Number of columns

• tchar: Field characteristic if T==Int

• tzero::T: Number 0 of type T

• tone::T: Number 1 of type T

• r::Vector{Int}: Vector of row indices

• c::Vector{Int}: Vector of column indices

• v::Vector{T}: Vector of matrix entries

If tchar>0, then the entries in v are all replaced by their values mod tchar.

source

ConleyDynamics.lists_from_sparse – Function.

nr, nc, tchar, tzero, tone, r, c, v = lists_from_sparse(sm::SparseMatrix)

Create list representation from sparse matrix.

The output variables are exactly what is needed to create a sparsematrix object using sparse_from_lists.

source

https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/sparse/sparse_from_full.jl#L58-L62
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/sparse/sparse_from_lists.jl#L3-L24
https://github.com/almost6heads/ConleyDynamics.jl/blob/040f174117032fad789a0e6906da8f3a22e08d44/src/sparse/sparse_from_lists.jl#L94-L101

Chapter 16

Complete API Index

16.1 Composite Data Structures

• ConleyDynamics

• ConleyDynamics.CellSubsets

• ConleyDynamics.Cells

• ConleyDynamics.ConleyMorseCM

• ConleyDynamics.LefschetzComplex

16.2 Lefschetz Complex Functions

• ConleyDynamics.convert_cells

• ConleyDynamics.convert_cellsubsets

• ConleyDynamics.convert_planar_coordinates

• ConleyDynamics.convert_spatial_coordinates

• ConleyDynamics.create_cubical_box

• ConleyDynamics.create_cubical_complex

• ConleyDynamics.create_cubical_rectangle

• ConleyDynamics.create_simplicial_complex

• ConleyDynamics.create_simplicial_delaunay

• ConleyDynamics.create_simplicial_rectangle

• ConleyDynamics.cube_field_size

• ConleyDynamics.cube_information

• ConleyDynamics.cube_label

• ConleyDynamics.get_cubical_coords

• ConleyDynamics.lefschetz_boundary

153

CHAPTER 16. COMPLETE API INDEX 154

• ConleyDynamics.lefschetz_clomo_pair

• ConleyDynamics.lefschetz_closed_subcomplex

• ConleyDynamics.lefschetz_closure

• ConleyDynamics.lefschetz_coboundary

• ConleyDynamics.lefschetz_field

• ConleyDynamics.lefschetz_filtration

• ConleyDynamics.lefschetz_gfp_conversion

• ConleyDynamics.lefschetz_is_closed

• ConleyDynamics.lefschetz_is_locally_closed

• ConleyDynamics.lefschetz_lchull

• ConleyDynamics.lefschetz_openhull

• ConleyDynamics.lefschetz_skeleton

• ConleyDynamics.lefschetz_subcomplex

• ConleyDynamics.manifold_boundary

• ConleyDynamics.permute_lefschetz_complex

16.3 Homology Functions

• ConleyDynamics.homology

• ConleyDynamics.persistent_homology

• ConleyDynamics.ph_reduce!

• ConleyDynamics.relative_homology

16.4 Conley Theory Functions

• ConleyDynamics.cm_reduce!

• ConleyDynamics.conley_index

• ConleyDynamics.connection_matrix

• ConleyDynamics.create_mvf_hull

• ConleyDynamics.create_planar_mvf

• ConleyDynamics.create_spatial_mvf

• ConleyDynamics.extract_multivectors

• ConleyDynamics.isoinvset_information

• ConleyDynamics.morse_interval

CHAPTER 16. COMPLETE API INDEX 155

• ConleyDynamics.morse_sets

• ConleyDynamics.mvf_information

• ConleyDynamics.planar_nontransverse_edges

• ConleyDynamics.remove_exit_set

• ConleyDynamics.restrict_dynamics

16.5 Example Functions

• ConleyDynamics.example_clorenz

• ConleyDynamics.example_critical_simplex

• ConleyDynamics.example_forman1d

• ConleyDynamics.example_forman2d

• ConleyDynamics.example_julia_logo

• ConleyDynamics.example_moebius

• ConleyDynamics.example_multiflow

• ConleyDynamics.example_nonunique

• ConleyDynamics.example_small_periodicity

• ConleyDynamics.example_subdivision

• ConleyDynamics.example_three_cm

16.6 Plotting Functions

• ConleyDynamics.plot_planar_cubical

• ConleyDynamics.plot_planar_cubical_morse

• ConleyDynamics.plot_planar_simplicial

• ConleyDynamics.plot_planar_simplicial_morse

16.7 Sparse Matrix Functions

• ConleyDynamics.SparseMatrix

• Base.:*

• Base.getindex

• Base.setindex!

• ConleyDynamics.full_from_sparse

• ConleyDynamics.lists_from_sparse

• ConleyDynamics.sparse_add_column!

CHAPTER 16. COMPLETE API INDEX 156

• ConleyDynamics.sparse_add_row!

• ConleyDynamics.sparse_from_full

• ConleyDynamics.sparse_from_lists

• ConleyDynamics.sparse_fullness

• ConleyDynamics.sparse_get_column

• ConleyDynamics.sparse_get_entry

• ConleyDynamics.sparse_get_nz_column

• ConleyDynamics.sparse_identity

• ConleyDynamics.sparse_is_sut

• ConleyDynamics.sparse_low

• ConleyDynamics.sparse_minor

• ConleyDynamics.sparse_multiply

• ConleyDynamics.sparse_permute

• ConleyDynamics.sparse_remove!

• ConleyDynamics.sparse_set_entry!

• ConleyDynamics.sparse_show

• ConleyDynamics.sparse_size

• ConleyDynamics.sparse_sparsity

	Contents
	Overview
	ConleyDynamics.jl
	Introduction
	Features
	Installation
	Manual Outline

	Manual
	Tutorial
	Creating Simplicial Complexes
	Computing Homology and Persistence
	Forman Vector Fields
	Isolated Invariant Sets
	Connection Matrices
	Multivector Fields
	Analyzing Planar Vector Fields
	References

	Lefschetz Complexes
	Basic Lefschetz Terminology
	Lefschetz Complex Data Structure
	Simplicial Complexes
	Cubical Complexes
	Lefschetz Complex Operations
	References

	Homology
	Lefschetz Complex Homology
	Relative Homology
	Persistent Homology
	References

	Conley Theory
	Multivector Fields
	Invariance and Conley Index
	Morse Decompositions
	Connection Matrices
	Extracting Subsystems
	Analysis of a Planar System
	Analysis of a Spatial System
	References

	Examples
	A One-Dimensional Forman Field
	A Planar Forman Vector Field
	The Multivector Field from the Logo
	Critical Flow on a Simplex
	Flow on a Cylinder and a Moebius Strip
	Nonunique Connection Matrices
	Forcing Three Connection Matrices
	A Lefschetz Multiflow Example
	Small Complex with Periodicity
	Subdividing a Multivector
	A Combinatorial Lorenz System
	References

	Sparse Matrices
	Sparse Matrix Format
	Creating Sparse Matrices
	Sparse Matrix Access
	Elementary Matrix Operations
	Sparse Matrix Information

	References

	Core API
	Composite Data Structures
	Lefschetz Complex Type
	Cell Subset Types
	Conley-Morse Graph Type

	Lefschetz Complex Functions
	Simplicial Complexes
	Cubical Complexes
	Lefschetz Complex Queries
	Topological Features
	Lefschetz Subcomplexes
	Lefschetz Helper Functions
	Cell Subset Helper Functions
	Coordinate Helper Functions

	Homology Functions
	Regular Homology
	Persistent Homology
	Reduction Algorithm

	Conley Theory Functions
	Multivector Fields
	Conley Index Computations
	Connection Matrix Computation

	Example Functions
	Examples from Batko et al.
	Examples from Mrozek & Wanner
	General Examples

	Plotting Functions
	Visualizing Simplicial Complexes
	Visualizing Cubical Complexes

	Sparse Matrix Functions
	Internal Sparse Matrix Representation
	Access Functions
	Basic Functions
	Elementary Matrix Operations
	Conversion Functions

	Complete API Index
	Composite Data Structures
	Lefschetz Complex Functions
	Homology Functions
	Conley Theory Functions
	Example Functions
	Plotting Functions
	Sparse Matrix Functions

